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ABSTRACT
In-time disease assessment is essential to better customize the med-
ication scheme and improve the quality of life for chronic diseases
like Parkinson’s disease (PD). Toward the inconvenience problem in
current clinical assessment practice, mobile sensing solutions based
on detecting Parkinson’s vocal changes are proposed. However, cur-
rent solutions either can only achieve binary disease detection task
or require patients to perform specific speaking tasks, which is not
effective and practical for disease stage assessment in daily scenario.
Moreover, most of existing solutions do not take speech privacy
into consideration. In this work, we present PDAssess, a free speech-
based daily assessment system that can perform 4-stage Parkinson’s
disease assessment in a privacy-preserving manner. We observe
that current solutions did not fully leverage the rich information
embedded in free speech due to the linguistic content variations, and
therefore leverage a pre-trained automatic speech recognition (ASR)
model to achieve a content variation-aware feature-extraction. In
order to distinguish subtle stage-wise differences, we design a novel
attention-based neural network architecture with a customized loss
function for disease assessment task. Towards the potential privacy
leakage problem, we design a Split Learning-based framework with
pseudo-labeling and local domain adversarial training to better
preserve speech content privacy. We collaborate with a medical
center and evaluate the performance of PDAssess on real-world
speech data collected from 50 PD subjects and 50 healthy subjects.
The evaluation result shows that PDAssess can perform 4-stage
PD assessment with an average person-wise F1 score of 89.1% and
voice sample-wise F1 score of 75.1%.

CCS CONCEPTS
• Human-centered computing→Ubiquitous and mobile com-
puting.
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Figure 1: The application scenario of PDAssess system.
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1 INTRODUCTION
Parkinson’s disease (PD) is currently the second-most common
progressive nervous system disorder that has already affected more
than 6 million people worldwide and is expected to rise to 14.2
million by 2040 [16, 60]. To receive more effective and personalized
treatment, PD patients need to constantly measure the disease
severity by seeking medical consultation [1, 12, 15].

Currently clinicians use well-designed scale systems to measure
PD severity, including the Hoehn and Yahr (H&Y) scale system [32]
and the unified Parkinson’s disease rating scale (UPDRS) system
[53]. These scale systems require the patients to perform a series of
tasks or fill in multiple questionnaires for the clinicians’ evaluation.
It is rather laborious for patients to visit the hospital for assessment
constantly. And the shortage of professional clinicians increases
assessment inconvenience. Therefore, to achieve better and more
convenient Parkinson’s disease management, an in-home daily
Parkinson’s disease assessment system is desirable.

With the help of mobile sensing technologies, research efforts
have been put into automating PD assessment in daily life. Research
works [4, 7, 37, 41, 76] have been proposed to enable motor-based
daily PD assessment. However, these approaches either require
patients to wear or use specially designed hardware [4, 7, 37], or
require performing specific tasks [41, 76], leading to inconvenience
in daily assessment. In addition, most motor symptoms will only be
developed after more than 70% dopaminergic neurons are damaged
[23], making it unsuitable for prodromal-stage PD assessment. More
recently, there are other assessment methods leveraging non-motor
biomarkers, such as breathing [78]. Though inspiring as it sounds,
specially designed hardware device is still required. In contrast,
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voice-based PD assessment is more suitable for daily scenarios and
all-stage evaluation, as vocal impairment of PD appears early in the
disease progression [67], and voice-based solutions can be achieved
by using commercial off-the-shelf (COTS) microphone only.

Recently, many research efforts have been put into voice-based
PD assessment [2, 3, 8, 10, 22, 36, 52, 63, 81]. However, current
voice-based solutions are not effective enough for practical daily
assessment owing to the following two limitations. Firstly, most
of the recent works [2, 10, 22, 36, 52, 81] target PD detection in-
stead of fine-grained assessment, which cannot have long-term
benefit for patients. Moreover, most of the works [2, 3, 8, 52, 63]
require patients to perform specific speaking tasks, such as sus-
tained vowel, diadochokinetic task or read a specific paragraph. On
the contrary, disease stage assessment based on free speech (voice
recordings with arbitrary linguistic content) is more favorable than
task-specific methods due to following reasons. Firstly, task-specific
vocal tests might impact the assessment accuracy in a long-term
perspective as the patients will get familiar with the task content
[9]. Such an issue will be relieved in free-speech scenarios. In ad-
dition, free-speech based system can operate in a purely passive
manner while task-specific solutions will however lead to a burden
to patients in the long round. However, comparing to task-specific
methods, which can already achieve around 90% staging accuracy,
existing free speech-based solutions fail to achieve a good perfor-
mance in severity assessment [10, 72], and have not considered
content privacy which is sensitive under free speech setting.

We observe that the performance bottleneck of current free-
speech based PD assessment is the mixing of linguistic content
information and disease-related features. We therefore try to obtain
a high-fidelity audio representation, from which disease-related in-
formation can be better disentangled. We will further elaborate our
observation in Sec. 3 in detail. We leverage a pre-trained ASR model,
HuBERT [33], to obtain such a audio representation. The design
rationale is that, deep learning-empowered ASR models have the
ability to extract high-dimensional audio embedding, which will
contain richer information for disease analysis. HuBERT is one
typical ASR model which can not only extract linguistic features,
but also capture non-linguistic information like speaker-related
details, which is beneficial for PD assessment [33].

With such an observation, however, designing a free speech-
based PD assessment system still faces three main challenges: (i)
Subtle stage-wise difference. Even if we have high-fidelity speech
representation, it is still challenging to disentangle disease-related
information and perform subtle stage assessment, especially with
stage label supervision only. (ii) Skewed disease distribution. Real-
world distribution of disease stage is highly skewed [46]. Specifi-
cally, there will be fewer patients in severe stages owing to disease
progression. And many mild-stage PD patients is undiagnosed, lead-
ing to a smaller population as well. Such a skewed distribution will
increase assessment difficulty. (iii) Potential privacy leakage. Daily
free speech may contain sensitive information that the user does
not want to expose to the system. It is difficult to achieve a good
assessment result without sacrificing user speech privacy.

In this paper, we propose PDAssess, a privacy-preserving free
speech-based Parkinson’s disease daily assessment system, whose
application scenario is demonstrated in Fig. 1. PDAssess addresses
the above three challenges with the following designs. Towards the

H&Y Definition
Stage 1 Unilateral involvement only
Stage 2 Bilateral involvement without impairment of balance

Stage 3
Mild to moderate involvement;

Some postural instability but physically independent
Needs assistance to recover from pull test

Stage 4 Severe disability; Still able to walk or stand unassisted
Stage 5 Wheelchair bound or bedridden unless aided

Table 1: The stages of the H&Y scale. [32]

first challenge, we design a squeeze-and-excitation (SE) attention-
based model, to extract and analyze disease-related features for
better disease assessment. We additionally adopt momentum con-
trastive loss [28] to train the model in a more effective manner with
person-wise and stage-wise consistency awareness, as the extracted
features from the same patient or different patients in the same
stage should be similar. Towards the second challenge, we incorpo-
rate multi-class focal loss [44], forcing the model to focus more on
the classes of a small population. Towards the third challenge, we
utilize Split Learning (SL) scheme [73] and further customize a local
adversarial-training technique [20] to prevent direct uploading of
audio representations and remove sensitive linguistic information.

We enroll PD patients and healthy controls to evaluate our sys-
tem in a home-like scenario. Specifically, we enroll 50 PD patients
and 50 healthy people for evaluation. We utilize a COTS microphone
device [59] to collect speech in a home setting. Results show that we
can achieve a 90.4% person-wise F1 score and a 76.5% sample-wise
F1 score for stage prediction with centralized training scheme, and
an 89.1% person-wise F1 score and a 75.1% sample-wise F1 score
with our privacy-preserving training scheme.

We highlight our contributions in the following three folds:
(i) We propose a novel hybrid neural network architecture for

Parkinson’s disease stage assessment based on free speech. We
incorporate a pre-trained ASR model as a non-linear signal prepro-
cessing method to extract high-fidelity audio representation. We
further design a neural network powered by the attention mech-
anism to eliminate linguistic content variations and model the
relationship between PD severity and human voice features.

(ii) We customize a privacy-preserving Split Learning framework
for our task. We remove the sensitive information in the voice
signals by embedding the adversarial training strategy. With such
a design, our scheme can offload computation burdens to the cloud
servers while protecting users’ privacy.

(iii) We collaborate with a medical center to collect a large dataset
with 50 patients and 50 healthy subjects and conduct extensive
evaluations in real-world scenarios. The evaluation results validate
that our system can not only achieve a high performance of around
90% person-wise F1 score and over 75% sample-wise F1 score on 4-
stage PD assessment but also work in a privacy-preserving manner.

2 BACKGROUND
In current PD management, clinicians need to constantly and accu-
rately evaluate PD patient’s symptom severity before selecting the
appropriate treatment. To track the disease progression, the clini-
cians mainly utilize the H&Y Scale [32] as the standard rating scale
owing to the conciseness and powerful clinimetric performance
for assessment. In this work we therefore adopt H&Y Scale as the
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(a) PLP, content-aligned (b) STFT, content-aligned (c) MFCC, content-aligned (d) Ours, content-aligned

(e) PLP, free speech (f) STFT, free speech (g) MFCC, free speech (h) Ours, free speech

Figure 2: Sample UMAP visualizations of preprocessed audio data under content-aligned or free-speech setting with conventional
techniques as well as our scheme with pre-trained ASR and feature extraction. The color legend on the right represents different
PD stages (0 refers to healthy people).

disease progression metric. In H&Y Stage system, PD patients are
classified into five stages (see in Table. 1), which can be categorized
into mild (Stage 1-2), moderate (Stage 3-4) and severe (Stage 5). Dur-
ing the disease progression, the watershed is Stage 3, after which
advanced interventions like surgeries will be needed [12].

Vocal impairment is an important biomarker for PD [65], which
appears in early disease stages and becomes more severe when the
disease progresses [67]. Recent clinical research [77] has demon-
strated that some vocal impairment features, such as fundamental
frequencies, have a strong correlation with H&Y scale. In this paper,
we try to leverage such correlation to analyze PD severity.

3 PRELIMINARY
Toward the assessment performance issue in free speech-based
solutions, we raise a research question: how can we design an ef-
fective free speech-based PD assessment solution? To answer this
question, we collect real-world speech samples from PD patients
and conduct analysis. We observe that one important factor limiting
free speech-based solutions’ effectiveness is the linguistic content
variations. That is, under free speech condition, we cannot control
the voice content to be the same. This is significantly different from
the above-mentioned vocal tasks including sustained vowel and
reading one specific sentence, whose voice or linguistic content are
aligned. Compared to the content-aligned setting, vocal impairment
features of PD will be more indistinguishable in free speech record-
ings, as these subtle features will be drowned in content variations.
It will be difficult to use traditional acoustic analysis to mine these
PD-related acoustic features out of free speech.

As a demonstration, Fig. 2a-2c and 2e-2g show a sample Uniform
Manifold Approximation and Projection (UMAP) [47] visualization
of content-aligned voice recordings and free speech from different
PD patients, which are processed by conventional acoustic analyses
[24, 30, 66]. We can see that, conventional techniques have a good
ability to differentiate disease stages on content-aligned audio. How-
ever, the data of different PD stages highly overlap with each other

in the feature space. This is owing to the fact that conventional
methods can only extract low-fidelity features from audio, which
will be more concentrated on content variations in free speech.
Therefore, to achieve better performance in free speech-based PD
assessment, we need a high-fidelity audio representation to capture
and further disentangle hidden disease-related information from
content variations.

With the aforementioned observation, we therefore propose to
use one pre-trained ASR model, HuBERT, to obtain audio represen-
tation with rich information. The benefit of using HuBERT [33] is
demonstrated in Fig. 2d and 2h. We can see that after the pre-trained
HuBERT and feature extraction, the audio samples with different
severity stages can be distinguished more easily.

4 SYSTEM OVERVIEW
In response to the aforementioned challenges in Sec. 1, we design
and implement PDAssess. The overall training and inference archi-
tecture of the system are illustrated in Fig 3. The system comprises
three main components:

(i) Pre-trained Model-based Pre-processing. In this module,
the system collects the users’ speech recording and performs voice
activity detection, and then leverages one pre-trained ASR model,
HuBERT [33], to extract high-fidelity audio representation for effec-
tive disentanglement of disease-related information. The detailed
design of this module is presented in Sec. 5.1.

(ii) Parkinson’s disease Assessment Model. In this module,
an MLP module is utilized on the client side to weigh and extract
disease-related features out. Another SE-Attention-based neural
network with special loss design is proposed on the server side to
proceed with the fine-grained assessment of Parkinson’s disease.
The module details are presented in Sec. 5.2.

(iii) Privacy-preserving Training Mechanism. In this module,
we utilize SL framework [73] to provide architecture-level privacy
preservation. In addition, we utilize a local domain adversarial
training technique combined with K-means clustering [27] based
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Figure 3: The overall architecture of the system.
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Figure 4: HuBERT model illustration.

pseudo-labeling to further protect the embedding privacy. The
design details of this module are presented in Sec. 5.3.

5 SYSTEM DESIGN
5.1 Pre-trained Model-based Pre-processing
As illustrated in Fig. 2, traditional acoustic analysis techniques fail to
present the disease severity-related information well due to the fact
that linguistic content variation overshadowed the speaker-related
disease information. One naive solution will be removing the lin-
guistic variations from the representation by averaging features for
different linguistic contents. However, this approach is ineffective
as the vocal impairment symptoms in PD vary in different linguistic
contents, such as presenting more phonatory changes in vowels
and more articulatory changes in consonants [21]. Therefore, in-
stead of processing the features in a content-agnostic manner, we
need to extract high-fidelity audio representations that can preserve
both linguistic content-wise information as well as disease-wise
information to further enable disease-aware analysis.

To empower such a representation extraction, we leverage a self-
supervised learning (SSL)-based pre-trained ASR model, HuBERT
[33]. The overall architecture and training scheme of HuBERT is
illustrated in Fig. 4. The SSL scheme adopted by HuBERT supervises
the model with pseudo-labeled acoustic units. The pseudo-labeling
is first performed with K-means [27] clustering on MFCC [66], and
later with trained HuBERT model in the previous iteration.

The reasons for using HuBERT are as follows: Firstly, compared
to the pre-defined operators or the filters in conventional methods
like STFT and MFCC, HuBERT adopts deep learning-based pre-
processing, which can extract complex characteristics from audio
signals by learnable kernels and non-linear activation functions.
Specifically, it adopts a transformer-based backbone, which can
extract features from sequential data like audio more effectively.
Secondly, HuBERT utilizes SSL scheme, which is based on cluster-
ing on pseudo acoustic labels instead of specific linguistic content
labels. Such a design can empower better extraction of not only
linguistic information, but also speaker-related characteristics [33].
Note that the speaker-related information is highly correlated with
the vocal system dynamics [57], and therefore may benefit PD’s
vocal impairment feature extraction. Thirdly, the audio data for
HuBERT pre-training is of a massive amount and with variations in
content, speaker and acoustic conditions, which makes the learned
representation more generalizable in real-world collected audio
data. The pre-trained HuBERT can provide audio representation

with a higher fidelity compared to conventional audio processing
methods, which can lay a better foundation for further disease-
relevant features extraction.

To be specific, we choose the large version of the HuBERT to cap-
ture enough acoustic features. The model starts with a 7-layer CNN
encoder, followed by 24 Transformer layers with 1024-dim feature
embedding. We use the final output of the Transformer backbone
as our representation. Due to the fact that our enrolled subjects
are Mandarin speakers, we use HuBERT model pre-trained on the
WenetSpeech dataset [80] with more than 10000 hours Chinese
speech. We give a demonstration of HuBERT’s ability to distin-
guish PD patients in different stages from free speech in Fig. 2d, 2h.
Compared to other pre-processing techniques like MFCC and STFT,
our scheme provides better audio representation that can better
cluster recordings from different stages based on free speech.

The detailed pre-processing procedure is the following: we first
extract the voiced parts of the participating subject out of the col-
lected conversational data; next we utilize rVAD, a robust voice
activity detection method proposed in [69], to remove the silences
between voiced segments and concatenate all voiced segments to-
gether for further processing; we then feed the voiced segments
directly into the pre-trained HuBERT model for audio represen-
tation extraction. After such pre-processing, we can obtain audio
feature embeddings that contain both vocal system-related and
linguistic-related information with high fidelity.

5.2 Parkinson’s disease Assessment Model
Though we have obtained high-fidelity audio representation from
the SSL-based pre-trained ASR model, it remains challenging to per-
form an accurate PD severity assessment. Specifically, there are two
main challenges towards disease assessment. Firstly, it is difficult
to effectively disentangle disease-related information from high-
fidelity audio representation. Secondly, given that we successfully
extract disease-related features, the fine-grained disease assessment
task is still hard in terms of subtle feature-wise relation modeling
and disease-stage distribution skewness.

To tackle the above challenges, we design two neural network
modules, namely PDProcessor and PDEvaluator, and the correspond-
ing loss function for our task. Moreover, as our target is to make
person-wise disease assessment, and there might be not enough
information encoded in single input segment, we design a majority
voting-based module to analyze segment sequence, which can pro-
vide more reliable results. The following will illustrate the detailed
design of these modules.
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Figure 5: The architecture of our assessment model.

5.2.1 PDProcessor: Client-end Feature Extraction Module.
The client-end feature extractor adopts a multi-layer perceptron

(MLP) architecture to perform disease-related information disen-
tanglement. The architecture is shown in Fig. 5. As we previously
mentioned, content-wise variation also contains disease informa-
tion. So we adopt MLP to extract such disease-related information
by dynamically weighing different input features. We set the hidden
sizes of MLP layers to 768 and 512. As for the normalization usage,
we utilize LayerNorm [75] instead of BatchNorm [35] to perform
feature normalization. The reason is that HuBERT performs Lay-
erNorm to normalize the feature space. In terms of the activation
function, we use the Parametric ReLU (PReLU) unit [29].

5.2.2 PDEvaluator: Server-end Disease Assessment Module.
Next we illustrate our disease-assessment module at the server end.
Owing to the lack of H&Y stage-5 patient and only 1 H&Y stage-4
patient (see Fig. 7), we combine the stage 3 and stage 4 as one class
and formulate the PD assessment task as a 4-class classification
problem, where the classes include healthy control (referred as
stage-0), H&Y stage-1, stage-2 and stage-3&4.

As some of the PD vocal impairments, such as articulation dys-
function, are revealed more in several consecutive acoustic units
instead of one single acoustic unit [51], we choose to bundle 512
samples together as one segment (correspond to 10.24 seconds) for
analysis instead of analyzing in a sample-wise manner. We treat the
segment as an image-like input with a width of 512 and a height
of 512 to preserve the sequential locality, and train deep neural
network module to perform the assessment.

Note that our PDEvaluator incorporates a relatively deep neural
network design, and a large number of feature maps, which is es-
sential for effective feature extraction as the PD vocal impairment
is quite subtle. However, our task supervision is relatively sparse
compared to our input in guiding such a complex neural network,
the model will be easily affected by noisy feature channels. There-
fore, to better empower the neural network’s training, we integrate
the design of squeeze-and-excitation (SE) attention into our model
[34]. The SE-attention module contains one global average pooling
layer and two fully connected (FC) layers on the feature dimen-
sion , which explore channel-wise significance through attention
mechanism. We add the SE-attention module on top of the residual
block as SE-ResBlock. Based on the SE-ResBlock, our final design
of the PDEvaluator is presented in Fig. 5, which contains one con-
volutional layer with BatchNorm, four consecutive SE-ResBlocks
and two FC layers to perform disease stage classification.

5.2.3 Loss Function Design.
As we mentioned in Sec. 1, the distribution of disease stages is

highly skewed, which may lead to statistical imbalance for model
training and lead to bad performance. Moreover, even though we
have leveraged SE-attention, the disease assessment task is still
difficult as we only have stage label supervision. Towards these two
design challenges, we leverage two types of loss design to increase
the model robustness under real-world scenarios: Multi-class Focal
Loss and Momentum Contrastive Loss.

(i) Multi-class Focal Loss. The category distribution of our
collected dataset is rather imbalanced, with a relatively small popu-
lation of stage-1 and stage-3&4 patients (see Fig. 7). Such an uneven
distribution will lead to skewed performance, that is, higher accu-
racy on categories with a large population, which is unfavourable
for disease assessment tasks. Therefore, to improve the performance
of minority classes, we utilize a modified version of Focal Loss [44]
for our multi-class classification problem. The loss is defined as
follows:

𝐿𝑖𝑓 = −𝛼𝑦𝑖 (1 − 𝑝𝑖 )𝛾 log(𝑝𝑖 ),
where the 𝑝𝑖 is the predicted probability of sample 𝑖 , whose label is
𝑦𝑖 , 𝛼𝑡 controls the weight for different classes and𝛾 controls the loss
based on the classification difficulty. We set 𝛼 to be [0.1, 0.4, 0.1, 0.4]
and 𝛾 to 2 in our experiment.

(ii) Momentum Contrastive Loss. Note that due to the linguis-
tics content difference, the audio samples from PD patients might
vary a lot, which leads to difficulty in neural network training. As
stage classification labels are relatively weak to guide the complex
neural network, we propose to consider person-wise and stage-
wise consistency in neural network supervision. Specifically, due
to the nature of Parkinson’s disease, within a nearby time period,
the prediction result should be the same. And the recordings from
patients of the same stage should have similar features.

However, simply pulling feature embeddings from the same user
or users in the same stage is not effective enough as it will be
influenced by outliers. That is, some of the audio samples may
not reveal enough vocal impairment as others depending on the
contents [21]. To extract features using person-wise and stage-wise
consistency and avoid the learned feature embeddings from being
affected by outliers, we adopt momentum contrastive loss [28] to
perform class-wise and person-wise momentum prototype learning.

The basic idea is to store and update a collection of user-wise
and class-wise embedding prototypes, and make the model learn
an embedding space where samples from the same disease stage
and the same user will gather around its embedding prototype,
while separating embedding prototypes from other classes or users.
Specifically, we introduce the following two contrastive losses on
the 2048-dim embedding before the last FC layer, class-wise con-
trastive loss 𝐿𝑐𝑙𝑎𝑠𝑠 and person-wise contrastive loss 𝐿𝑝𝑒𝑟𝑠𝑜𝑛 :

𝐿𝑖𝑐𝑙𝑎𝑠𝑠 = − log
exp ( z𝑖 ·c𝑦𝑖𝜏 )∑𝐾
𝑘=1 exp ( z𝑖 ·c𝑘𝜏 )

, 𝐿𝑖𝑝𝑒𝑟𝑠𝑜𝑛 = − log
exp ( z𝑖 ·m𝑢𝑖𝜏 )∑𝑅
𝑟=1 exp ( z𝑖 ·m𝑟𝜏 )

where 𝑧𝑖 is the embedding of sample 𝑖 , 𝑦𝑖 is its corresponding class
label and 𝑢𝑖 is its correspondling user id. And 𝑐𝑦𝑖 is the embedding
prototype of the corresponding class and 𝑚𝑢𝑖 is the embedding
prototype of the corresponding user. 𝜏 is the temperature parameter.
We set 𝜏 to be 0.1 during the experiments.
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During the training of the neural network, we adopt a momentum-
based approach to update the class and user prototype. Specifically,

c𝑘 = 𝛼𝑐c𝑘 + (1 − 𝛼𝑐 )z𝑖 ,∀𝑖 ∈ {𝑖 |𝑦𝑖 = 𝑘}
m𝑟 = 𝛼𝑚m𝑟 + (1 − 𝛼𝑐 )z𝑖 ,∀𝑖 ∈ {𝑖 |𝑢𝑖 = 𝑟 }

where the notations are consistent with the above loss functions.
In addition, we leverage weight decay to prevent overfitting,

which is implemented as an L2 regularization strategy that penalizes
over large model parameters to prevent overfitting. To conclude,
our overall loss function on the server side will be the following:

L =
𝑛∑︁
𝑖=1
(𝐿𝑖𝑓 + 𝜆𝑐𝑙𝑎𝑠𝑠𝐿𝑖𝑐𝑙𝑎𝑠𝑠 + 𝜆𝑝𝑒𝑟𝑠𝑜𝑛𝐿𝑖𝑝𝑒𝑟𝑠𝑜𝑛) + 𝜆𝑑𝑒𝑐𝑎𝑦 ∥w∥2,

here we set 𝜆𝑐𝑙𝑎𝑠𝑠 = 1, 𝜆𝑝𝑒𝑟𝑠𝑜𝑛 = 0.8 and 𝜆𝑑𝑒𝑐𝑎𝑦 to 10−5 in our
experiment.

5.2.4 Majority Voting Module.
As we have discussed in Sec. 5.1, PD’s vocal impairment symptoms
will vary with respect to the linguistic content difference. Though
our model has incorporated HuBERT pre-processing and model
design to tackle this problem, the sample-wise prediction may still
be inaccurate as the amount of disease-related information encoded
in different samples will be different, for instance, the disease fea-
ture might be more evident in vowels but less evident in some
consonants. However, as our final target is to make a more reliable
person-wise prediction, it is possible to cumulatively analyze a
sequence of audio samples to offer a person-wise assessment result,
easing the sample-wise prediction variation problem.

According to this idea, we design an extra majority voting mod-
ule for audio sample sequence analysis, which can provide a more
reliable person-wise disease assessment result. Specifically, for 𝑛
continuous audio samples, the system will vote to give the following
result 𝑦 according to the majority of the sample predictions:

𝑦 =

{
𝑐𝑖 if 𝑐𝑖 > 𝑐 𝑗 ,∀𝑗 ≠ 𝑖,
refuse to predict 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (if equally distributed),

where 𝑐𝑖 is the number of samples belong to class 𝑖 , and 𝑖 ∈ [1, 2, 3, 4].
In the evaluation, if the voting result is refuse to predict, then we
treat such prediction as wrong.

5.3 Privacy-preserving Training Mechanism
To deploy such a PD assessment system in real-world scenarios, one
more design challenge we need to tackle is the privacy issue. Since
our training data is free speech, whose content is rather sensitive,
directly uploading these data onto the server for processing will
lead to privacy leakage. Therefore, we design a privacy-preserving
training mechanism to solve this problem. Our training scheme is
based on Split Learning architecture [73]. Towards better privacy
preservation, we incorporate domain adversarial training (DAT)
technique [20] to reduce the speech content information in the
uploaded embedding, limiting the leakage of sensitive information.
We don’t adopt Federated Learning (FL) scheme here because FL
will have a rather poor convergence due to distribution skewness,
which is demonstrated in our evaluation Fig.10a. In this section, we
will first explain our threat model, and elaborate on our privacy-
preserving training mechanism design in detail.

Algorithm 1: PDAssess Server training procedure for step 𝑡 .

params: B: mini-batchs; E: number of epochs; 𝜂𝑡 : learning rate;
Wt: weight of PDEvaluator ; Ak

t : uploaded embedding; ∇𝐿: gradient
1: function PDServer(step 𝑡 )
2: for each client 𝑘 ∈ 𝑆𝑡 in parallel do
3: A𝑘𝑡 ← PDClientUpdate(𝑘, 𝑡)
4: Wt ←Wt − 𝜂𝑡∇𝐿(W𝑡 ;A𝑘𝑡 )
5: PDClientBackProp(𝑘, 𝑡,∇𝐿(A𝑘𝑡 ))
6: Sync PDProcessor’s weight
7: end for
8: end function

5.3.1 Threat Model.
Split Learning (SL) is a novel distributed machine learning frame-
work that can provide better client data privacy preservation com-
pared to the traditional centralized training scheme. The basic idea
is to split the neural network model into two parts, one for the
client and one for the server. Instead of uploading the raw data to
the server, SL asks the clients to feed their data into the client-side
model and upload the embedding to the server for further process-
ing. SL then claims that the privacy-preserving objective can be
achieved since the raw data cannot be effectively inferred from the
uploaded embedding.

However, one recent work proposes a potential attack named
Feature-space Hijacking Attack (FSHA) towards SL [55]. The threat
model is described as follows: consider the computation server is
malicious and curious about the user’s speech content. The attack-
ing process is (i) the malicious server collects a speech dataset and
pre-processes it with pre-trained HuBERT as well. (ii) the malicious
server trains an attack model to convert the uploaded embedding
back to the raw pre-processed representation instead of the train-
ing assessment model. (iii) the malicious server collects uploaded
embeddings from some clients and uses the trained attack model
to invert its post-HuBERT representation. (iv) the malicious server
can train a decoder on pre-trained HuBERT and use it to obtain the
raw input data from the hacked post-HuBERT representation.

Towards such threat model, we customize the split learning
framework under our scenario for privacy-preserving.

5.3.2 Server-side Training Procedure.
On the server side, we adopt similar architecture as Split Learning.

The server side mainly executes the training process of PDEvalu-
ator, which is described in Algorithm. 1. For each training round,
the server will sequentially query each client to perform feature
extraction with PDProcessor, and calculate and backpropagate the
loss based on the output of PDEvaluator. Afterward, the server will
send the gradient back to the clients for client model update. At the
end of each round, the server will inform the clients to synchronize
the weights of their models for further training.

5.3.3 Client-side Training Procedure.
As the server might be malicious according to our threat model,

we need to adjust our client training procedure from the vanilla SL
design. In addition to using PDProcessor for embedding generation,
we incorporate a DAT module with pseudo-labeling on the client
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Algorithm 2: PDAssess Client training procedure for step 𝑡

params: B: mini-batchs; E: number of epochs; 𝜂1, 𝜂2, 𝜂3: learning
rate; H𝑘𝑡 , U𝑘𝑡 : weight of PDProcessor and DAT module 𝑓 ; Ak

t :
uploaded embedding; D𝑘 : HuBERT embedding; ∇𝐿,∇𝐿𝑎𝑑𝑣 : normal
and DAT gradient

1: function PDClientUpdate(client 𝑘 , step 𝑡 )
2: if 𝑡 == 0 then
3: PseudoLabeling(𝑘, 𝑝)
4: end if
5: A𝑘𝑡 = 𝜙
6: for batch 𝑏 ∈ 𝐵 in each local epoch 𝐸 do
7: A𝑘𝑡 ← Concatenation of A𝑘𝑡 and 𝑓 (𝑏;H𝑘𝑡 )
8: end for
9: return A𝑘𝑡 to server

10: end function
11: function PDClientBackprop(client 𝑘 , step 𝑡,∇𝐿(A𝑘𝑡 ))
12: for batch 𝑏 ∈ 𝐵 do
13: H𝑘𝑡 ← H𝑘𝑡 − 𝜂1∇𝐿(A𝑘𝑡 ;H𝑘𝑡 ;𝑏) + 𝜂2∇𝐿𝑎𝑑𝑣 (𝑔(A𝑘𝑡 );H𝑘𝑡 ;𝑏)
14: U𝑘𝑡 ← U𝑘𝑡 + 𝜂3∇𝐿𝑎𝑑𝑣 (𝑃𝑏 , 𝑔(A𝑘𝑡 );U𝑘𝑡 ;𝑏)
15: end for
16: end function
17: function PseudoLabeling(client 𝑘 , cluster num 𝑝)
18: Randomly sample 𝑝 embeddings out of D𝑘 as the centroids

of clusters 𝐶
19: while not converge do
20: Assign all embeddings to the closest cluster 𝑐 ∈ 𝐶
21: Recompute all the cluster centroids
22: end while
23: for all 𝑑 ∈ D𝑘 do
24: Pseudo Label 𝑃𝑑 ← cluster index of 𝑑
25: end for
26: end function

side for privacy-preserving. The architecture of the DAT module is
shown in Fig. 5.

We notice that the linguistic contents of the speech are rather
sensitive as private information like financial details can be inferred,
and thus try to reduce linguistic information in order to prevent
the content inversion from the server. The basic units of linguistic
contents are defined as acoustic units or phonemes [5]. As label-
ing acoustic units can be labor-intensive in large dataset, we here
adopt the pseudo-labeling technique [33, 45] to obtain these units
for further removal from continuous speech. It is mentioned that
by clustering on the HuBERT embeddings, the phone purity can
achieve around 70% [33]. Hence, in our system design, we adopt K-
means clustering [27] with K=100 on post-HuBERT representations
to generate pseudo-labels. Normally the value of K should be set
slightly greater than the number of basic acoustic units in a certain
language. We here choose the value based on its usage in [33]. The
detailed procedure of pseudo-labeling is illustrated in Algorithm. 2.

After pseudo-labelling these units, we need to remove their in-
formation from the calculated embedding. Thus we introduce the
DAT module based on the pseudo-labels, which is a two-layer MLP
module with Gradient Inverse Layer. The design of the DAT module
is shown in Fig. 5. The basic idea of DAT is to inverse the gradient
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Figure 6: Experiment setup.
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Figure 7: Patient H&Y
stage distribution.

Stats PD Healthy
Population 50 50
Age (years) 63.0(10.6) 65.6(8.1)

# Female 24 25
# Smoker 2 17

Disease Duration (years) 4.92(4.03) /
Age & duration form: mean (standard deviation).

Table 2: Participants statistics.

value through backpropagation, so that the neural network will try
to reduce its emphasis on the DAT label differences. The detailed
backpropagation process is illustrated in Alg. 2.

Based on such a training scheme, we can progressively remove
information related to pseudo acoustic units as the training pro-
ceed, and therefore encode less linguistic content information in the
embedding. Moreover, such a client training design can confront
the malicious server’s training scheme, which can push the em-
bedding away from the objective of the potential malicious server
and defense against the FSHA attack. Though the DAT scheme will
lead to some performance degradation as the linguistic contents
are also useful as our discussed in Sec. 5.2.2, the degradation is
comparatively small as the linguistic content is not crucial in the
assessment, which is shown in our evaluation. Moreover, such a
trade-off is acceptable as we preserved the sensitive speech data
privacy, which is important in our scenario.

6 EVALUATION
6.1 Evaluation Setup
6.1.1 Dataset Collection.
To evaluate the real-world performance of our system, we collab-
orate with the Second Affiliated Hospital of Zhejiang University
School of Medicine to enroll 50 PD patients and 50 healthy control
on the basis of research protocols approved by institutional review
board. Written informed consent is obtained from all subjects. Medi-
cal professionals ensure that enrolled PD patients are idiopathic PD
patients, excluding other related diseases such as PSP (progressive
supranuclear palsy) and MSA (multiple system atrophy) [50]. Each
patient’s disease severity is evaluated with the H&Y scale system by
professionals. For each participant, we conduct a demographic sur-
vey to record related information such as gender, age and smoking.
The overall participants’ statisitcs are listed in Table. 2.

Data collection is conducted in a room setup with around 20
𝑚2 with a noise of 40-50 dB, simulating a daily-life environment.
The setup is shown in Fig. 6. We collect all the voice data using
a combined device with a Seeed ReSpeaker 6-Mic Circular Array
Kit [82] and a Raspberry Pi 4B development board [59], mimicking
hardware configurations of most commodity smart speakers. The

257



SenSys ’23, November 12–17, 2023, Istanbul, Turkiye B. Yang et al.

Stage-0 Stage-1 Stage-2 Stage-3&4
Predicted

S
ta

g
e
-0

S
ta

g
e
-1

S
ta

g
e
-2

S
ta

g
e
-3

&
4

G
ro

u
n

d
 T

ru
th

0.81 0.15 0.04 0.00

0.03 0.77 0.17 0.02

0.02 0.09 0.83 0.07

0.00 0.03 0.23 0.75

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: Sample-wise confusion matrix.

Model Metric Stage 0 Stage 1 Stage 2 Stage 3&4 Avg Binary

RF Acc 0.3728 0.2399 0.9002 0.0242 0.3843 0.6623
F1 0.4583 0.3137 0.7604 0.0449 0.3943 0.4594

X-vector Acc 0.6991 0.3599 0.8445 0.2766 0.5450 0.8047
F1 0.6461 0.4596 0.7953 0.3297 0.5576 0.6475

PDVocal Acc 0.7589 0.6149 0.8464 0.3420 0.6406 0.8380
F1 0.7499 0.6377 0.8296 0.3879 0.6488 0.7416

PDAssess Acc 0.8077 0.7721 0.8265 0.7460 0.7880 0.9594
(w/o SL) F1 0.8300 0.7007 0.8621 0.6667 0.7648 0.9770
PDAssess Acc 0.8462 0.7051 0.7965 0.7354 0.7708 0.9622
(w/ SL) F1 0.8748 0.6262 0.8327 0.6715 0.7513 0.9785

Table 3: Sample-wise benchmark comparison. Best results are in Bold.

ReSpeaker is placed around 1 meter away from participants, and
records speech with a 44.1 kHz sampling rate. We select the channel
with the most average energy as the data source. Participants are
free to talk in any direction to simulate a real-world conversational
environment. They are asked to have some random conversation
with the examiner for 1 to 2 minutes. The detailed conversation
protocol is listed in Appendix. A. We collect 2.59 hours of audio
recordings in total.
6.1.2 Experimental Setting.
For the data pre-processing, we resample the audio recordings
from 44.1 kHz to 16 kHz, and segment the audio recordings into
pieces with 10.2-second length with a sliding window of 4-second,
and therefore have 2119 voice samples overall for training and
evaluation. Our neural networks are implemented in Python 3.8 and
Pytorch 1.12 [56]. The distributed training scheme is implemented
using OpenMPI [19] and the mpi4py library [14]. The optimizer we
adopted is Adam [38] with an initial learning rate of 10−5. We load
minibatch data from the whole dataset and set the batch size to
64. We conduct experiments on a cluster with NVIDIA Tesla V100
SXM2. For the evaluation setting, we mainly utilize a random 5-fold
cross-validation with respect to users instead of samples. In order
to check the performance of each individual, we conduct leave-one-
subject-out validation in the person-wise evaluation sections.
6.1.3 Performance Metrics.
We compare our design according to the following two main per-
formance metrics:

Person-wise Performance: After majority voting on the recorded
1-2 minute audio data, the system will output a person-wise result
with respect to the majority of sample predictions. For the leave-
one-subject-out experiments, we use macro-version person-wise
F1 score as our system’s performance metric. That is, we report
one prediction result for each person and calculate the F1 score
according to these results. Moreover, in the demographic results
we also use person-wise F1 score as our metric.

Sample-wise Performance: Though the final prediction is pro-
vided by the majority voting module, it is still important to look
at sample-wise performance for neural network model evaluation.
Towards such performance evaluation, we select the macro ver-
sion of F1 score and accuracy as our metrics. Note that in terms of
multi-class classification, accuracy is equivalent to recall. Moreover,
due to the previously mentioned imbalanced data distribution, we
mainly use F1 score as our benchmark and ablation study metrics.
And for the privacy-related discussion, we choose the weighted
average of accuracy for phoneme recognition as there is no much
data imbalance as in the disease prediction.

6.1.4 Benchmark Models.
We compare our system’s performance with the following state-of-
the-art voice-based Parkinson’s disease assessment methods:

Random Forest [11] is one of the famous traditional machine
learning algorithms that has been examined to be effective in many
classification problems. Existing works [71, 81] in Parkinson’s dis-
ease detection utilized this model with MFCC as baseline; we there-
fore use it together with 57-dim MFCC (19-dim and the first and
second-order difference) as one of our benchmarks.

X-vector [36, 68] is a widely adopted neural network archi-
tecture for speaker identification and speaker-related information
extraction with MFCC. Recently it has been proven to be an effec-
tive digital biomarker for Parkinson’s disease [36]; we therefore
utilize this together with 57-dim MFCC as one of our benchmarks.

PDVocal [81] uses a ResNet-like architecture to detect Parkin-
son’s disease from the unvoiced breathing sound, and also has been
examined to be effective with speech signal using the MFCC feature
extraction method. With ResNet structure, it is able to extract more
hidden patterns from the signal, we therefore use this together with
57-dim MFCC as one of our benchmarks.

6.2 Evaluation Results
6.2.1 Overall Performance.
To evaluate our system’s performance, we perform leave-one-out
validation to see the effectiveness on different subjects. Fig. 8 demon-
strates the overall confusion matrix. From the confusion matrix,
we can see that our system can achieve around 75-85% accuracy
over all the disease stages prediction, demonstrating the ability
to accurately predict the disease progression. Fig. 9a shows the
person-wise F1 score. We can see that our system can achieve aver-
agely 90.4% F1 score without SL, and 89.1% F1 score with SL, both
with a balanced prediction performance. In comparison, we also
performed leave-one-subject-out evaluation on our implementation
of PDVocal’s system, which achieves an around 75% average F1
score. Moreover, PDVocal shows a performance degradation on the
severe stage classification (H&Y-3&4), which is of a significance in
disease management such as taking surgeries. Also, we can see that
our system’s performance stays relatively consistent after introduc-
ing SL and DAT scheme, showing that a good performance can be
achieved while preserving privacy. From such a person-wise evalu-
ation, we can see that our system can achieve a superior result in
assessing PD severity, especially in classifying more serious stages.

6.2.2 Sample-wise Benchmark Performance.
To further validate the performance of the PDAssess, we perform
the following sample-wise benchmark evaluation.
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Figure 9: F1 score Comparison.

We conduct sample-wise benchmark evaluations compared to
other state-of-the-art voice-based Parkinson’s disease assessment
systems. The results are shown in Fig. 9b and Table. 3. As the
benchmarks are mainly designed for binary classification tasks, we
provide the binary classification result in the last column as well to
prove the correctness of our implementation. In the Fig. 9b, different
color bars represent the F1 score of different stages, and the dashed
outline represents the average F1 score of all four stages. We can
see that our model achieves the best average F1 score and accuracy
with a minimal stage-wise variation. Moreover, for almost all stages
our model achieves the best performance, with just minor inter-run
variation shown by error bars. Note that for H&Y-2, due to the large
data skewness, we can see that RF achieves the best accuracy, which
is due to the prediction extremity of the RF model responding to the
dataset. That is, the insufficient modeling ability leads the RF model
to an overfitting situation, where all the samples are likely to be
classified as H&Y-2, leading to a high accuracy (recall) of this stage.
However, such overfitting will lead to a decrease in the overall
system performance as shown in the averaged results. Therefore,
through this benchmark we can see the prediction effectiveness
of our model against different disease stages. Though in the SL
version of our system, we get a little performance degradation due
to a trade-off between accuracy and privacy, the overall accuracy
is still acceptable and we suppose it can be further improved with
more data being collected in the future.

6.2.3 Ablation Study.
In the following section, we will discuss the ablation study results
of our system.

Impact of Pre-processing. We evaluate our proposed pre-
processing technique against PLP [30], STFT [24], and MFCC [66]
and Wav2Vec2 [6] on top of our model. The first three conventional
feature extraction methods have widely been used in human voice
processing as well as speech-based PD assessment tasks. The last
one is another widely-used ASR model. For the PLP implementa-
tion, we use Rasta-PLP [31] to extract the initial 13-dim feature,
and perform first and second-order differences to get the final 39-
dim features. For the STFT Spectrogram, we resample the audio
recordings to 16kHz, and set the number of frequency bins to 320
with a Hanning sliding window of length 160 to align the segment
length with HuBERT, so that the feature dimension of the output
spectrogram is 161. For MFCC, we use the same setting in STFT to
obtain the basic Spectrogram, and extract 19-dim MFCC initially,

and perform first and second-order differences to get the final 57-
dim feature. For Wav2Vec2, we also use its pre-trained version on
Wenetspeech, who will also extract out 1024-dim audio embedding.

We report the macro-version F1 score as our metric here, and
the results are shown in Fig. 10b. We can observe that, in terms
of average F1 score, our pre-trained model-based method achieves
the best among all five methods, with an increase of around 10%
F1 score compared to MFCC, the previous state-of-the-art method
on related tasks. Also we can see a 5% F1 score increase compared
to Wav2Vec2, another ASR model that widely used in audio tasks.
Moreover, we can see a decrease in prediction variation among
different disease stages. These demonstrate that our proposed pre-
processing method improves both the F1 score and the robustness
of the prediction. The main reason for such improvement is that the
pre-trained HuBERT model enables a more sophisticated mapping
between the raw audio space and the disease-oriented feature space
comparing to conventional audio preprocessing. And compared to
other existing ASR models like Wav2Vec2, HuBERT can extract
more non-linguistic information, which is helpful in our assessment.

Impact of Distributed Training Scheme. We conduct evalua-
tions on our distributed training scheme against two other privacy-
preserving distributed training schemes, FedAvg [48], which is one
of the standard Federated Learning (FL) frameworks, and FedProx
[42], an FL framework that is improved towards imbalanced data
distribution. Our distributed training simulation is performed with
100 clients, each corresponding to one subject. The evaluation re-
sults are shown in Fig. 10a. We witness a huge F1 score degradation
when training our model on top of the FedAvg architecture, where
the final F1 Score is only around 20% with a huge class-wise vari-
ation. This is mainly caused by the heavy imbalance in our data
distribution. Firstly, the number of subjects in H&Y-1 and H&Y-
3&4 is relatively smaller than those of H&Y-2 and healthy control.
The subject-wise imbalance factor is around 10, which will lead to
heavy performance degradation. Secondly, in our problem setting,
each subject can only access one kind of disease label, making the
weights on other disease classes not randomly generalized, and
generating a bad weight aggregation result. And we can see a per-
formance improvement in FedProx-based training, which achieves
around 30% F1 score and a decrease in the variation. However, the
performance is still not satisfying. Comparatively, our proposed
usage of SL architecture can effectively stabilize the training and
improve performance. We obtain around 70% F1 score with a maxi-
mum class-wise F1 Score variation of 5%, which is a direct result of
the weight synchronization and sequential training in SL.

Impact of SE-Attention. We first evaluate the effectiveness
of introducing the SE-attention into our system. We compare the
performance of this module to see if inter-channel relations exist
for our feature dimension. The result is shown in Fig. 10c. By in-
tegrating the SE-attention into the system, we witness an around
5% overall F1 score improvement compared to the original resid-
ual architecture. This demonstrates the effectiveness of leverag-
ing feature-wise relation in the acoustic embedding generated by
the pre-trained HuBERT model. What’s more, such performance
improvement is demonstrated in prediction results for all stages,
which shows that the benefit brought by the SE-attention design is
generally applicable to all stages’ predictions.
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Figure 10: Ablation Study Results (a) Impact of our distributed training scheme. (b) Impact of our pre-processing scheme. (c)
Impact of SE-attention. (d) Impact of domain adversarial training. (e) Impact of multi-class focal loss. (f) Impact of momentum
contrastive loss.

Impact of Domain Adversarial Training. Next, we evaluate
the impact of introducing the domain adversarial training module
into our system. By leveraging pseudo acoustic unit targeted do-
main adversarial training, the neural network will try to remove
the phoneme-related information from the uploaded embedding.
Though the speech content privacy can be preserved better, which
we will discuss in Sec. 6.2.4, the evaluation results in Fig. 10d show
that a performance degradation will occur due to such adversarial
training. From the result we can see that, after using the domain ad-
versarial training scheme, the overall F1 score is decreased by 1.3%.
Moreover, the performance instability increases among different
stages, including 8% F1 score decrease for stage-1 prediction, and a
slight increase of F1 score in stage-0 prediction due to the training
instability. This demonstrates the privacy-performance trade-off
in our system, even though the F1 score degradation is not much.
By involving more training data in the system through collabora-
tive training, it is possible to improve the overall performance and
compensate for such negative impact.

Impact of Loss Design. We here evaluate the impact on the
results of our two loss designs. Our ablation study involving loss
functions are conducted by replacing the special loss part with
normal cross entropy loss function.. First is the multi-class focal
loss, the result of which is shown in Fig. 10e. Focal loss will penalize
the model for those classes of greater difficulty to classify well, and
thus dampen the prediction F1 Score variations between different
classes. We can see that the introduction of focal loss improves the
system’s performance in H&Y-1 and H&Y-3&4, especially the latter
one. Without the focal loss design, the prediction F1 score of H&Y-1
decreases to less than 60%, and the prediction F1 score of H&Y-3&4
also decreases down to 60%, which shows the effectiveness of focal
loss in our system to improve the stage-wise prediction imbalance.
We also evaluate the impact of momentum contrastive loss. The re-
sult is shown in Fig. 10f. The contrastive loss will generally improve
the overall performance of the system, which can be witnessed in
the figure. We can see an improvement of around 5% in terms of
overall F1 score. Especially, the introduction of contrastive loss
improves the performance of minor class H&Y-3&4, contributing
to the robustness of our system.
6.2.4 Privacy Analysis.
We next evaluate and discuss our privacy-preserving scheme. In
our system design we mainly adopt the SL architecture, therefore
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Figure 11: Privacy Analysis.

we have the original privacy-related advantages of SL. Firstly, the
client can use its own model to process the data before uploading,
and the server has no access to the client model, preventing both
direct data access and potential model inversion attacks. Moreover,
the server-side model will not publish to clients, which protects the
model’s privacy and the model owner’s intellectual property.

In addition to the above advantages, we incorporate the domain
adversarial training technique into our design, so that in the up-
loaded embedding, there will be less speech-content-wise informa-
tion as we cannot distinguish linguistic units from the embedding.
Therefore, to examine our design’s benefit, we evaluate our sys-
tem with the previously mentioned FSHA attack [55]. The result is
shown in Fig. 11a. We can see that with our domain-adversarial-
training (DAT) enhancement, the reconstruction error in terms of
Mean Square Error(MSE) is comparatively higher than that with-
out DAT after 1000 epoch training. Moreover, we can see from the
result in Fig. 11b when we train the whole system using DAT, the
pseudo-acoustic unit’s prediction accuracy is restricted to less than
5%, compared to an accuracy of around 80% without using DAT.
Therefore, we can see that we achieve a high level of privacy preser-
vation on the speech-content information with our DAT-enabled
Split Learning architecture.

6.2.5 Robustness Analysis.
In this section, we discuss our system’s robustness under different
noise settings. We evaluated our system on two types of real world
noises, including raining and walking. The noise data is adopted
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Figure 12: Demographic and Robustness Analysis.

from a noise dataset [18]. We examined the performance under
three different SNR level, 20dB, 15dB and 10dB. The results are
shown in Fig. 12d. We can see that our system achieves a robust
performance under walking conditions with 70-80% F1 score. How-
ever, the system’s performance is a bit unsatisfactory under raining
situation, will drop to around 60% when SNR is small. This might
due to the fact that the frequency components of rain sound falls
more into human voice frequencies than walking. In the future, we
will adopt data augmentation and other techniques to enhance the
system’s robustness under noisy conditions.

6.2.6 Demographic Analysis.
In this section, we discuss our system’s performance on different
demographic groups. We analyze our system’s performance on
gender, smoking and age differences. The results are shown in Fig.
12a-12c. In terms of gender, we can see that our system performs
consistently on male and female population, both with an F1 Score
around 90% . As for smoking, we can can witness a 5.8% F1 score
difference between smokers and non-smokers. This might indicate
that smoking can be a factor in impacting the system’s performance,
possibly due that smoking makes the vocal symptoms more distinct
for discovery. And for different age groups, we can also see that the
performance is relatively stable while dropping a bit in population
aged over 75-year-old. This might because the age distribution of
our dataset is also skewed, that is, we only get 15 objects greater
than 75-year old, making the reported person-wise F1 score not
that representative. In the future, we would like to collect more
data to analyze the system’s performance on different age groups
to provide more reliable and holistic analysis.
6.2.7 Complexity Analysis.
In this section, we evaluate and discuss our system’s computational
complexity. Table. 4 shows the model’s training complexity mea-
surement. As our system follows the client-server architecture, we
should mainly focus on the client side model of PDAssess. From
the comparison we can see that the PDAssess (Client) has compar-
atively less parameters and FLOPs than the same-size version of
MobileNet, i.e. MobileNet-512 [64], which is the state-of-the-art
lightweight machine learning model for edge processing and has
also been utilized in PDVocal [81]. This can effectively demonstrate
our system’s feasibility in real-world deployment. Note that the
utilized version of MobileNet in PDVocal is 0.25-MobileNet-224,
whose complexity is small. However, it only accept small input, 1
second sample in its case, which cannot be fairly compared with our

Model Name Params (M) FLOPs (M)
0.25-MobileNet-224 [81] 0.47 41

MobileNet-224 [64] 4.2 569
MobileNet-512 4.2 2276

PDAssess (Client) 1.3 688
PDAssess 14.9 850

Table 4: Model Complexity.
model as the training intervals are different. Moreover, we might
adopt some model pruning techniques in the future to further re-
duce the client-side model complexity, making it more suitable for
edge processing.

7 DISCUSSION
In addition to the existing functionalities, in this section, we will
discuss some potential future directions of our system.

Other Languages. Our current collected dataset only involves
Mandarin speakers. Based on this fact we utilize the Chinese pre-
trained HuBERT model for audio pre-processing. However, it has
been validated that ASR models can perform well on different lan-
guages with corresponding training data [58]. Though we haven’t
examined our system’s performance on Parkinsonism speech record-
ings in other languages, we believe our system will still be applicable
in these scenarios as the pre-processing module can be adjusted
correspondingly, the assessment analysis is content-invariant and
the vocal feature of PD patients should be irrelevant to languages.
Evaluations of our system with different languages will be left as
future work.

Other Related Diseases. Currently our dataset collection pro-
tocol ensures that only idiopathic PD patients are enrolled in our
evaluation. However, note that other similar neurological system
diseases will also lead to vocal impairments, such as Alzheimer’s
Disease [49], non-idiopathic PD (PSP, MSA) [50]. Moreover, inflam-
mation diseases such as laryngitis might also lead to dysphonia
symptoms [17, 62]. Though we haven’t investigated the impact of
these related diseases on our system in this work, we suppose it is
possible to distinguish these diseases from PD as the vocal impair-
ment patterns vary in different diseases [61]. In the future, we will
continue to collect data from patients with these related diseases
and refine our neural network design by transfer learning tech-
niques [13, 74] to design a more robust system for PD assessment,
and possibly extend to other related diseases assessment.

Other Environmental Factors. Currently our dataset collec-
tion is performed in a daily-life room setup with a changing envi-
ronmental noise of 40-50 dB, and the participants can freely choose
speaking directions or volumes. Benchmark evaluation and robust-
ness study can show good system performance under real and noisy
scenarios. However, owing to the time and resource constraint we
are not able to collect more data for more holistic system evalua-
tions like performance on changing room sizes and distances, or
recordings under cross-talk conditions. Though these environmen-
tal changes might impact the system performance, we believe it can
be solved with domain adaptation and generalization techniques
[20, 79]. In the future, we will conduct more experiments to explore
our system’s performance under different recording conditions.

Other Related Attacks. In our current privacy-preserving train-
ing scheme, we only discuss the threat model with a malicious
server. However, due to the client model’s weight synchronization
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process, there is also a possibility that the attack can be launched
on the client side when the malicious user wants to steal the other
user’s information. Recent research has revealed the potential of
such an attack [55]. Nevertheless, existing defensive solutions on
SL for such attack [70] should also be applicable given that our sys-
tem is adopted from SL. Exploring unique defensive mechanisms
towards such client-wise SL attacks under our scenario will be
explored in our future work.

8 RELATED WORK
8.1 Voice-based Parkinson’s Disease Assessment
Recently, research efforts have been put into voice-based PD assess-
ment. Most of the current research focuses on Parkinson’s disease
detection based on vocal tasks or speech, which is a coarse-grained
assessment and cannot continuously benefit PD patients. [2, 22]
proposed to use conventional speech analysis methods on PD detec-
tion. However, they require the user to read content-aligned tasks,
which is not practical for real-world scenarios. [10] explored the use
of glottal source information in the speech-based PD assessment.
Though the classification result is good, the method suffers from
noisy conditions. [36, 52] both used the X-vector speaker identifi-
cation technique to detect PD. The solution outperforms previous
solutions for text-independent free speech, but does not consider
privacy issues in free speech setting. Moreover, to leverage the
power of deep learning and avoid privacy leakage of speech data,
PDVocal [81] proposed a system to extract non-speech body sound
and design a neural network for PD detection. Though such a so-
lution can solve the privacy issue to some extent, environmental
noises can influence the system performance as the non-speech
body sound can hardly be sensed in a noisy environment. Moreover,
the above-mentioned works are all limited to PD detection task.

There are also researches that exploit the possibility of sever-
ity assessment based on speech. [3, 8] are two early works on
fine-grained voice-based PD assessment targeting UPDRS-based
PD severity prediction. They both used specific speaking tasks
as speech materials, and therefore may lead to a lack of user ad-
herence. Alternatively, [25, 54] conducted assessment based on
monologue materials. However, they mainly utilized conventional
feature extraction methods which did not fully exploit the hidden
characteristics in free speech, leading to unsatisfactory assessment
results. Therefore, we try to leverage high-fidelity audio represen-
tations from free speech for more practical fine-grained assessment.

8.2 Privacy-preserving Distributed Machine
Learning

To empower collaborative learning from different participants with-
out sacrificing data privacy, several distributed machine learning
frameworks have been proposed.

Federated Learning (FL) is one of the most popular privacy-
preserving distributed learning frameworks. In each round of the
algorithm, each client receives the whole global model and trains
locally with their own data, and sends back the model to the server,
where the updated weights are averaged and distributed again.
McMahan et al. [48] presented the FedAvg algorithm, which is
regarded as the baseline of FL algorithms. However, FL suffers
from skewed distribution problem in real-world conditions. To

tackle such problem, many algorithms have been proposed such as
FedProx [42] and FedBN [43]. However, these solutions still suffer
in heavy imbalance scenarios.

Split Learning (SL) is another framework proposed recently
to tackle the convergence problem of FL [26, 73]. In SL, a neural
network will be split into two parts, which are located separately
on the client side and the server side. And instead of uploading
raw data or model weight, SL only requires the user to upload
embedding to the server. Recently many works have leveraged
SL to obtain a privacy-preserving solution which achieves better
performance [39, 40]. However, recent research reveals that SL may
have potential security issues due to the uploading of embeddings
[55]. In this work, we adopt and modify SL architecture in our
problem and improve the privacy-preserving ability.

9 CONCLUSION
In this paper, we present PDAssess, a privacy-preserving free speech-
based Parkinson’s disease daily assessment system. The system will
passively record the daily speech of the user and automatically an-
alyze the disease severity. PDAssess is able to perform a 4-stage PD
assessment with robustness and accuracy while preserving speech
content privacy. We leverage several techniques to achieve the as-
sessment objectives: We utilize a pre-trained ASR model, HuBERT,
for speech preprocessing to extract high-fidelity speech represen-
tation. We design a hybrid neural network architecture with SE-
attention and utilize special loss designs to achieve an assessment
of high accuracy. We adopt and customize the Split Learning frame-
work with a local adversarial training mechanism with pseudo
labels to better preserve speech content privacy. We collect real-
world speech data from PD patients and conduct comprehensive
experiments to evaluate the system. The evaluation results show
that our system can achieve high accuracy on 4-stage assessment
around 90% person-wise F1 score and over 75% sample-wise F1
score among 100 subjects while preserving client data privacy.
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A CONVERSATION PROTOCOL
Our conversation protocol is as follows: we will randomly select
3-4 daily questions out of 5, regarding weather and city description
as well as personal interests on book, food, seasons:

• Can you describe today’s weather?
• Can you recommend some places to visit? Why?
• Can you recommend something good to eat and give some

description?
• Can you recommend a book and give some description?
• What’s your favorite season and why?

We choose to design insensitive open questions and adopt random
question selection schemes to ensure the diversity of speech data
within and across subjects for the system’s generalizability in daily
conditions.
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