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Human Activity Recognition (HAR) faces significant challenges when deployed in real-world scenarios due to non-independent 
and identically distributed (non-IID) data distributions. While existing domain adaptation (DA) approaches attempt to address 
this issue, they either require access to source data or struggle with large domain shifts. This paper presents a novel source-free 
domain adaptation framework for HAR that effectively handles substantial domain discrepancies across different datasets. 
Our approach introduces two key innovations: (1) a Discriminative Information Gramian (DIG) method that quantifies the 
relationship between target-domain samples and the source domain without requiring access to source data, and (2) an 
unsupervised domain generalization technique that ensures consistent feature extraction across augmented data samples, 
enhancing the model’s effectiveness in the target domain. We evaluate our framework on five diverse HAR datasets comprising 
87 users with varying demographics, devices, and environmental conditions. In single-source scenarios, our method achieves 
76.77% accuracy and 67.03% F1-score, surpassing state-of-the-art solutions by 9.77% and 17.43%, respectively. For multi-source 
scenarios, we attain 85.33% accuracy and 79.55% F1-score, exceeding existing methods by at least 8.8% and 14.8%, respectively. 
This work represents the first successful attempt at dataset-level HAR domain adaptation without access to source data, 
marking a significant advancement in practical HAR applications.
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1 INTRODUCTION
Human activity recognition (HAR) is an increasingly important field with significant implications for applications 
such as healthcare, smart home, and entertainment [3, 14, 15, 21, 26, 27, 40, 57]. The primary goal of HAR is 
to monitor physical activity accurately. However, a significant problem for traditional HAR approaches is the 
non-independent and identically distributed (non-IID) data caused by real-world factors, such as different user 
groups, devices and environments. This will greatly limit the performance of HAR tasks when facing unseen 
data distributions in real-world deployment [50].

In response, a variety of domain adaption (DA) approaches have been proposed to enhance the performance of 
HAR models when facing unseen data distributions. Existing DA approaches can be divided into two groups. 
The first group of methods, such as UniHAR [55] and CrossHAR [18], directly leverage the source data (data for 
training the original model) to adapt the HAR model to new users. They generally use alignment-based methods 
to keep the features extracted from the new user’s data close to that of the source data for the adaptation. However, 
these methods are impractical because the source data are often confidential and inaccessible to the customers. 
To address this issue, the second group of methods attempts to achieve model adaptation without source data. 
These methods, such as OFTTA [53] and SF-Adapter [23], typically use self-supervised learning methods to force 
the model to give predictions that can be clustered into distinctive groups with the same structure as the ground 
truth labels. Although these methods are proven to be capable of adapting a HAR model to unseen users, they 
have poor performance when facing data with larger domain shifts. For example, these methods cannot work 
when adapting a model to a completely new dataset with a much larger domain discrepancy due to factors such 
as different user demographics, device specifications, or environmental conditions. This reveals a fundamental 
contradiction between achieving dataset-level HAR model adaptation and maintaining performance without 
access to source data.
In this research, we wish to bridge this gap and design a DA system that can work in dataset-level domain 

adaptation with no source data prerequisites. We observe that previous successful dataset-level domain adaptation 
methods generally select the target-domain data samples that are close to the source domain to facilitate the 
adaptation [18, 55]. However, this selection process relies on access to source data, as it is essential for measuring 
which target-domain samples align with the source domain’s data distribution. Therefore, the biggest challenge 
is to design a method to measure the distance between the target-domain data and the source domain without 
access to source data. Our rationale for tackling this challenge is that if a data sample is far from the source 
domain, it will give predictions with low confidence using the original HAR model [2]. Consequently, minor 
alterations to the raw data, such as applying data augmentation techniques, can significantly impact prediction 
results, leading to ambiguity. Conversely, if a data sample is close to the source domain, its augmentations and 
itself will give consistent predictions. Therefore, to select the target-domain data samples that are close to the 
source domain to facilitate DA, we first perform data augmentation and select the authentic-virtual data pairs 
that are close to each other in the feature domain. Notably, when computing the distance between these feature 
pairs, we design a method called DIG to consider both the distance of the features and their correlation with the 
source domain. We first extract the last-layer output of the mode as a Discriminative Information of the data 
sample, process them with the Gramian matrix of the model parameters, and then calculate the distance between 
these two. This DIG measurement not only characterizes the distance between two features but also encodes their 
relationship with the source domain because the Gramian matrix characterizes the model parameters, which are 
optimized with the source data. As we will see in Sec. 4.3.2, this design significantly boosts the performance.
The second challenge is that even if we can select a good amount of high-quality target-domain samples 

that are close to the source domain, it is still hard to fine-tune the HAR model so that it can be generalized to 
all target-domain data due to the lack of target-domain labels. To resolve this challenge, we design a domain 
generalization pipeline that updates the HAR model in a way that the features extracted from the selected
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Table 1. A summary of existing human activity recognition approaches and our work.

Approach Without
source data

Source model Target
unlabeled data

Non-IID in real world

Cloud Edge New user New user group
UniHAR [55]
CrossHAR [18]
OFTTA [53]

SF-Adapter [23]
DDLearn [38]
DI2SDiff [59]

MobHAR (our work)
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⊙ is not supported by the approach;  is supported by the approach.

target-domain data and their augmentations are consistent with each other. The rationale behind this design is
that we can increase the generalizability of the HAR model by making it invariant to different data augmentation
techniques and, further, to all the target domain data. Specifically, we calculate the Wasserstein distance [1]
between the distributions of features extracted from two data samples, an authentic data sample and its augmented
variant, to characterize their distance [7]. We then use the Nuclear norm ∥ · ∥∗ to compute the loss function and
use this loss function to enforce feature extraction consistency.
With the above design considerations, we present MobHAR to achieve source-free and dataset-level domain

adaptation.We evaluate our approach’s capabilities on five commonHAR datasets. These datasets include different
physical activities characterized by the inertial measurement unit (IMU) data on smartphones. These datasets have
fundamentally different data collection setups, including completely different user groups, devices, environments,
etc. Specifically, a total number of 87 users are included in these five datasets. The experiment results demonstrate
that MobHAR attains an average accuracy of 76.77% and an F1-score of 67.03% in the single-source scenario
(model trained on one dataset and tested on the other four), surpassing state-of-the-art (SOTA) solutions by a
minimum of 17.43% in terms of F1-score and 9.77% in terms of accuracy. Additionally, in the multi-source scenario,
MobHAR achieves an average accuracy of 85.33% and an F1-score of 79.55%, outperforming SOTA solutions by at
least 14.8% in terms of F1-score and 8.8% in terms of accuracy. We outline the key contributions of this paper as
follows.
• We design MobHAR, a source-free domain adaptation framework for HAR models, which is designed
to handle large domain discrepancies. To the best of our knowledge, this is the first work to achieve
dataset-level HAR domain adaptation without the need for source-domain data.
• We propose a few methods to solve a series of technical challenges, including a DIG method to measure
the relationship between target-domain data samples and the source domain, and an unsupervised domain
generalization technique to generalize the model from the source domain to the target domain.
• We locally prototypeMobHAR on the user side and rigorously evaluate its domain adaptation ability with a
variety of datasets. Our results show that MobHAR exceeds state-of-the-art solutions, achieving at least a
17.43% improvement in F1-score and a 9.77% increase in accuracy1.

1We release the source code of MobHAR: https://github.com/xmyun/Phar

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.



22:4 • Xue et al.

100 50 0 50 100

50

0

50

100

Still
Walk

Upstairs
Downstairs

Still
Walk

Upstairs
Downstairs

(a) Distribution shift

75 50 25 0 25 50 75 100

100

75

50

25

0

25

50

75

Still
Walk

Upstairs
Downstairs

Still
Walk

Upstairs
Downstairs

(b) Aligned by MobHAR

Fig. 1. Impact of real-world distribution shift. (a) The orange and purple colors denote samples from the Motion and Shoaib 
datasets, respectively. (b) Distribution shift removed by MobHAR.

2 PRELIMINARIES AND RATIONALES
2.1 Source-free HAR
In a practical setting, users download a HAR model from an app store to monitor their activities. As shown in 
Table 1, we categorize existing HAR approaches [18, 23, 38, 53, 55, 59] into two groups: (i) Source data-based 
method denotes those that are requiring the training (source) data of the downloaded HAR model [18, 55] and (ii) 
Source-free HAR denotes those that solving non-IID do not need source-domain data [23, 38, 53, 59].
Source data-based methods are more effective than source-free approaches. However, source data-based 

methods require training data for a downloaded HAR model, which is often challenging for consumers to obtain. 
Source-free HAR approaches do not need source data, requiring high-quality unlabeled new user data. Therefore, 
there is currently no accurate activity monitor approach that meets the needs of real-world environments.

2.2 Non-IID Data in Real-world Environments
Existing HAR models such as [17, 19, 21, 27, 40, 45, 46, 56, 57] commonly assume that data adheres to the concept 
of independent and identically distributed (IID) [50]. However, individual differences like age, body type, and 
behavior deviate from this assumption, preventing the model from being generalized to other domains [53]. 
Specifically, the performance of HAR models may decline when the data distribution of a new user differs from 
that of the training datasets. For instance, ASTTL, as noted in [36], achieves only an average accuracy of 66.3%
when transferred between datasets, indicating substantial performance degradation due to significant distribution 
shifts (inter-dataset). Utilizing t-SNE [48] to visualize distribution shifts between the Motion [30] and Shoaib 
[42] datasets, as shown in Figure 1(a) and detailed in Section 4.1, reveals significant discrepancies in the inertial 
measurement unit (IMU) data for the same activity type across these datasets. Therefore, there is a significant 
gap in addressing large data distribution shifts when implementing HAR in practice.

To roughly assess MobHAR’s capability in handling distribution shifts, we visualize t-SNE of sample features 
post-transfer from Shoaib to Motion, as detailed in Section 4.1. As illustrated in Figure 1(b), MobHAR effectively 
manages the distribution shift.
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Fig. 2. High-quality virtual data selection based on augmentation strategy.

2.3 Problem Definition
Our HAR framework aims to tailor personalized models locally from pre-trained ones for new, unseen users.
As illustrated in Figure 4, the pre-trained model is trained on initial datasets, defined as the source domain
D𝑆 = {𝑥𝑠𝑖 , 𝑦𝑠𝑖 }

𝑛𝑠
𝑖=1, where 𝑥 ∈ R𝑑 denotes the 𝑑-dimensional sensor input and 𝑦 ∈ 𝑌 signifies the corresponding

activity label. New users download pre-trained HAR models, and their local, unlabeled datasets collected from
one or more mobile devices are defined as the target domainD𝑇 = {𝑥𝑡𝑖 }

𝑛𝑡
𝑖=1. Significant shifts in data distribution

between the target D𝑇 and sourceD𝑆 domains are likely due to factors such as ages, devices, on-body positions,
body types, and behavioral habits. The framework’s ultimate objective is to deliver a high-performance activity
recognition model that respects user privacy for these new, unseen users.

2.4 Motivation
Test-time adaptation (TTA) [32, 49, 53] can improve a model’s generalization by using pseudo labels from
unlabeled data. However, there are unavoidable errors between pseudo and real labels, resulting in noise gradients
and incorrect model learning. Moreover, noisy data can worsen these errors, potentially disrupting the model
and severely degrading its predictive ability. Thus, a natural question emerges: can we leverage high-quality data
to fine-tune the model? This question is nearly impossible to answer, as evaluating the quality of unlabeled data is
quite challenging for different new users.

To tackle this challenge, we introduce the DIG method to quantify the relationship between the target domain
and the source domain samples. According to [2], if a data sample is far from the source domain, the original HAR
model will produce low-confidence predictions. If a data sample is close to the source domain, both the sample and
its augmentations yield consistent predictions. Therefore, as shown in Figure 2, for each unlabeled data, we first
augment unlabeled data using six kinds of strategies [6, 35, 40, 46, 47, 51, 55, 56], including normalization, rotation,
wrapping, permutation, adversarial examples, and jittering. Then, using DIG, we get the optimal authentic-virtual
data pairs from the six kinds of strategies. Finally, we select the top-ten percent of authentic-virtual data pairs in
each batch, which are optimized with the source data. Therefore, as shown in Figure 3, we achieve the goal of
selecting high-quality unlabeled data by quantifying the relationship between the target domain and the source
domain samples.

3 DESIGN OF MOBHAR
Figure 4 shows that MobHAR comprises two parts: measuring DIG and crafting personalized models.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.
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Fig. 3. Select high-quality unlabeled data.
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Fig. 4. Architecture ofMobHAR, which has two parts: measuring DIG and crafting personalized models.

Measuring DIG: In this section, we design the DIG in the context of feature spaces. The DIG matrix quantifies
the discrepancy between a new user’s data and its augmented variations. By utilizing the DIG, we can assess
high-quality data to customize a source-free HAR model. Consequently, the DIG matrix plays a crucial role
in selecting appropriate pre-trained models, facilitating source-free knowledge transfer, and ensuring timely
stopping to prevent overfitting.
Crafting Personalized Models: In this section, we present a methodology for utilizing DIG to customize

a personalized model. Specifically, we design an adversarial mechanism to facilitate source-free knowledge
transfer, tailoring a personalized HAR model for new users. First, we employ minimum DIG to select high-quality
unlabeled data, leveraging multiple data augmentation strategies. Next, we conclude the fine-tuning of the HAR
model at the epoch corresponding to the maximum DIG.

3.1 Maximum Mean Discrepancy Information using Gramian Matrix
Source-free HAR method under non-IID data across diverse user groups from real-world variations requires
high-quality pseudo labels from unlabeled data for fine-tuning. In order to ensure pseudo-labels quality as much as
possible, it is better to remove the distribution discrepancy between the training data of the consumer-downloaded
HAR model and the consumer user’s unlabeled data. However, meeting this challenge is difficult due to the
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non-IID nature of data across diverse user groups, influenced by real-world variations such as different devices,
usage patterns, and environments.

To get high-quality pseudo labels from unlabeled data, we design the maximum mean discrepancy information
using gramian matrix of feature spaces to select high-quality samples. Specifically, we first use Gramian informa-
tion to calculate the inner products of a collection of features extracted from layers of the HAR model. Then,
we create gramian representation in the feature space using unlabeled data and its augmentation. Finally, we
devise discriminative information from the statistical moments and calculate the median and median absolute
deviation. Based on the DIG of feature spaces, we quantify the distance between unlabeled data and its variations.
Moreover, a lower DIG indicates higher quality pseudo labels from unlabeled data.

3.1.1 Gram Matrix in HAR Model. Gramian information is commonly employed in style transfer learning [12],
where it calculates the inner products of a collection of m-dimensional vectors. These vectors can represent
features extracted from layers of the HAR model. Formally, we define a set of𝑚-dimensional layers of a HAR
model as:

L := {𝑙𝑛 |𝑙𝑛 ∈ R𝑚}𝑁𝑛=1, (1)

where 𝑙𝑛 denotes the feature representation of the input sample 𝑥 at the 𝑙-th layer of the HARmodel, 𝑁 denotes the
number of channels at layer 𝑙 , and𝑚 signifies the height multiplied by the width of each feature map. Therefore,
we define the Gram matrix of the HAR model as:𝐺𝑖 𝑗 =

∑𝑚
𝑛 𝑙𝑖𝑛 · 𝑙𝑇𝑗𝑛 , where𝐺𝑖 𝑗 represents the Gramian information

between each layer in an inner product space of dimensions 𝑁 ×𝑁 . The entries of 𝑝−th order of the Gram matrix
is defined as:

𝐺
𝑝

𝑖 𝑗
= (𝑙𝑝

𝑖
𝑙
𝑝𝑇

𝑗
)1/𝑝 , (2)

where 𝑝 denotes the exponent. Since the matrix 𝐺𝑝

𝑖 𝑗
is symmetric, we form a 𝑁 (𝑁 + 1)/2-dimensional vector,

denoted as 𝐺𝑝

𝑑
, where 𝑑 denotes the dimension of 𝑁 (𝑁 + 1)/2.

Given the upper limit of an order 𝑃 , we can derive 𝐺𝑝

𝑑
for every order 𝑝 ∈ {1...𝑃}. For the input sample 𝑥 ,

we create a new representation 𝑟 = [𝐺1
𝑑
,𝐺2

𝑑
, ...,𝐺𝑃

𝑑
] ∈ R𝑑𝑃 by concatenating all the 𝐺𝑝

𝑑
. Let 𝑥𝑡 denote the data

samples of an unseen target user, and 𝑥𝑡𝑎 denote its augmentation. Consequently, for a given HAR model, we
obtain a feature representation as described in Equation 1, along with a concatenated set of Gramian information
𝑅𝑡 = {𝑟𝑖 , 𝑖 ∈ 1, 2, ..., |𝑥𝑡 |}. Similarly, we derive 𝑅𝑡𝑎 = {𝑟𝑖 , 𝑖 ∈ 1, 2, ..., |𝑥𝑡𝑎 |} for the augmentation data samples.
Therefore, the relationship between the model and the new user’s unlabeled data can be expressed by measuring
the distance between 𝑅𝑡 and 𝑅𝑡𝑎 .

3.1.2 Formulating the DIG. Let 𝑥𝑝𝑡 ∼ 𝑃𝑡,𝑝 and 𝑥𝑝𝑡𝑎 ∼ 𝑃𝑡𝑎,𝑝 denote the 𝑝-th order representation derived from the
unseen target user distribution 𝑃𝑡,𝑝 and the augmented distributions 𝑃𝑡𝑎,𝑝 of the user, respectively. MobHAR
calculates representations in feature space without making any assumptions about 𝑃𝑡,𝑝 and 𝑃𝑡𝑎,𝑝 . Specifically,
MobHAR derives discriminative information from the statistical moments of 𝑃𝑡,𝑝 and 𝑃𝑡𝑎,𝑝 [4]. Referring to [29],
we can define the DIG as a view of statistical moments:

𝐷𝐼𝐺 (𝑃𝑡 , 𝑃𝑡𝑎) = 𝐸𝑝 [𝐸 (𝐺𝑥
𝑝

𝑡
) − 𝐸 (𝐺𝑥

𝑝

𝑡𝑎
)]

= 𝐸𝑝 [𝜇𝑝1 𝜇
𝑝𝑇

1 − 𝜇
𝑝

2 𝜇
𝑝𝑇

2 + 𝜎
𝑝

1 − 𝜎
𝑝

2 ],
(3)

where 𝜇𝑝1 and 𝜎
𝑝

1 denote the mean vector and the covariance matrix of 𝑥𝑝𝑡 , 𝜇
𝑝

2 and 𝜎
𝑝

2 denote the mean vector
and the covariance matrix of 𝑥𝑝𝑡𝑎 , 𝑃𝑡 denotes a collection of the representations from the unseen target user
distribution with elements of different powers, and 𝑃𝑡𝑎 denotes that of the augmented distributions of these users.
We provide a detailed derivation in the Appendix 8.1.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.



22:8 • Xue et al.

ALGORITHM 1: Customizing a HAR model for a new user.
Input: The HAR models downloaded from the App store.

1 Phase 1: A new user downloads the HAR models.
2 Phase 2: MobHAR selects the best model parameters for the new user using DIG (Equation 5).
3 while 𝑖 ← 1 to 30 do
4 Conduct data augmentation: normalization, rotation, wrapping, permutation, adversarial examples,

and jittering.
5 Select the optimal data augmentation strategy using DIG.
6 for batch in epoch 𝑖 do
7 Compute the distribution shift loss by Equation 14.
8 Adapt the HAR model using the distribution shift.
9 Stochastically restore model by Equation 7.

10 end
11 Calculate the DIG (Equation 5) sum.
12 end
13 Output the best HAR model by DIG.

3.1.3 Calculating the DIG. Utilizing the Gramian information 𝑅𝑡 = {𝑟𝑖 , 𝑖 ∈ 1, 2, ..., |𝑥𝑡 |} from the unseen target
user’s data 𝑥𝑡 , we calculate the median and Median Absolute Deviation (MAD) [25] as 𝑟 𝑗 = 𝑀𝑒 (𝑟𝑖 𝑗 , 𝑖 ∈ |𝑥𝑡 |) and
𝑀𝐴𝐷 𝑗 = 𝑀𝑒 ( |𝑟𝑖 𝑗 − 𝑟 𝑗 |, 𝑖 ∈ |𝑥𝑡 |). We calculate the distance of feature representation 𝑟 𝑗 from the candidate point 𝑟
as:

𝛿 𝑗 (𝑟 𝑗 ) =


0 𝑖 𝑓 𝑏𝑙 ≤ 𝑟 𝑗 ≤ 𝑏𝑢,
𝑏𝑙−𝑟 𝑗
𝑏𝑙

, 𝑖 𝑓 𝑟 𝑗 ≤ 𝑏𝑙 ,
𝑟 𝑗−𝑏𝑢
𝑏𝑢

, 𝑖 𝑓 𝑏𝑢 ≤ 𝑟 𝑗 ,

(4)

where 𝑏𝑙 = 𝑟 𝑗 − 10×𝑀𝐴𝐷 𝑗 and 𝑏𝑢 = 𝑟 𝑗 + 10×𝑀𝐴𝐷 𝑗 denote the lower and upper bounds, respectively. Therefore,
the distance of the candidate point 𝑟 can be calculated by summing all 𝑟 𝑗 as: 𝛿 = 1

𝑑𝑃

∑𝑑𝑃
𝑗=1 𝛿 𝑗 .

As the distributions of the unseen target user and the generalized distributions may not exhibit significant
differences, it is essential to employ a distribution measurement method without assumptions about the dis-
tributions being tested [41] when evaluating the distance between 𝑅𝑡 and 𝑅𝑡𝑎 . Drawing from advancements in
distance measurement methodologies [9, 16, 31], we can reformulate Equation 9 using RMMD as:

𝐷𝐼𝐺 (𝑃𝑡 , 𝑃𝑡𝑎) = ∥𝜇𝑃𝑡 − 𝜇𝑃𝑡𝑎 ∥2H − 𝜆𝑃𝑡 ∥𝜇𝑃𝑡 ∥
2
H − 𝜆𝑃𝑡𝑎 ∥𝜇𝑃𝑡𝑎 ∥

2
H, (5)

where 𝑃𝑡 and 𝑃𝑡𝑎 denote the distribution of representations obtained from the deviation measurement for the 
two subgroups (unseen target user and its augmentation).

3.2 Crafting Personalized Models
After evaluating the disparity between a general model and personalized models, we can leverage this information 
to customize personalized models via source-free knowledge transfer. As shown in Figure 5, we design an 
adversarial mechanism to facilitate source-free knowledge transfer. At the minimum stage, we choose high-
quality unlabeled data to fine-tune the HAR model based on minimum DIG. At the maximum stage, we assess 
whether the high-quality data is sufficient to conclude the fine-tuning using maximum DIG. The minimum stage 
contains Measuring Disparity to Select High-Quality Data and Eliminating Disparity. The maximum stage contains 
Preventing Overfitting.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.



MobHAR: Source-free Knowledge Transfer for Human Activity Recognition on Mobile Devices • 22:9

Fig. 5. Adversarial mechanism to facilitate source-free knowledge transfer. ’Min’: choose high-quality unlabeled data to
fine-tune the HAR model based on minimum DIG. ’Max’: assess whether the high-quality data is sufficient to conclude the
fine-tuning using maximum DIG.

3.2.1 Measuring Disparity to Select High-Quality Data. Since consumer users can only access unlabeled data
from their own devices and a downloaded HAR model, assessing the quality of this unlabeled data is significantly
challenging. Although some test-time adaptation methods [20, 32, 49, 53] can generate pseudo labels using both
unlabeled data and a downloaded HAR model, there are inherent errors between the pseudo and actual labels.
Additionally, noisy data can exacerbate these errors, making it less practical to rely on pseudo labels for evaluating
unlabeled data.

To solve this problem, we utilize the DIG to quantify the distance between unlabeled data and its augmentation
variations, ensuring MobHAR can effectively select high-quality samples. This is essential because the inclusion
of unfavorable samples can adversely affect the model’s performance [43]. To achieve this, we first perform data
augmentation on each sample, employing techniques such as normalization, wrapping, rotation, adversarial
examples, permutation, and jittering. The reason why we utilize multiple data augmentation strategies is that
augmentation operations might alter key features of the data. Moreover, since consumer users lack the training
data of a downloaded HAR model, irrelevant variations from augmentation operations on unlabeled data can
increase distribution discrepancies in non-IID environments. Subsequently, we calculate the distance between
each augmented sample and the original sample using DIG. Finally, we obtain the new user’s data and its
corresponding variants according to the smallest DIG values.
To conduct source-free knowledge transfer based on the new user’s data and its corresponding variants, we

resort to the predicted discriminative information from the HAR model. Specifically, we calculate the Wasserstein
distance [1] between the distributions of two features, 𝑃𝑡 and 𝑃𝑡𝑎 . Due to the complexity of the distribution
of a new user’s data, the Wasserstein distance often mistakenly emphasizes domain-level feature confusion,
which consequently undermines the user’s activity information. Based on [22], the main diagonal elements in the
self-correlation matrix of the HAR model’s prediction denote the intra-class correlation 𝐼𝑖 , while the off-diagonal
elements denote the inter-class confusion 𝐼𝑜 . For an unseen target user, if the distribution gap between the new
user and pretrained model’s training users is large, then the HAR model’s prediction generally yields a small 𝐼𝑖
and large 𝐼𝑜 . However, if the distribution gap is small, the HAR model’s prediction generally yields a large 𝐼𝑖 and
small 𝐼𝑜 . Thus, 𝐼𝑖 - 𝐼𝑜 can be used to denote the discrepancy while eliminating the distribution shift.

3.2.2 Eliminating Disparity. To reduce the disparity between a general model and personalized models, we
develop a structure based on the pre-trained HAR model 𝑓 and a softmax layer as the classifier 𝑆 . Since the
discrepancy between 𝐼𝑖 and 𝐼𝑜 , as measured by the Frobenius-normWasserstein distance, may overlook the classes
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with small samples [8], we use the nuclear norm ∥ · ∥∗ to enhance prediction diversity [7, 8]. To mitigate the 
need for repetitive alternating updates in the HAR model, we employ a gradient reverse layer (GRL) [11], which 
facilitates updates within a single backpropagation step. As a result, MobHAR conducts source-free knowledge 
transfer as follows:

L𝜃 𝑓 =𝑚𝑖𝑛{ 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

(

𝑆 (𝑓 (𝑥𝑡𝑖 ))

∗ − 

𝑆 (𝑓 (𝑥𝑡𝑎𝑖 ))

∗)}, (6)

where 𝑁𝑢 denotes the number of samples from the unseen target user, 𝑥𝑡 denotes the sample from the unseen
target user 𝑡 , 𝑥𝑡𝑎 denotes the augmentation data samples of 𝑡 . We provide a detailed derivation in the Appendix
8.2.

3.2.3 Preventing Overfitting. The HAR model may face significant challenges in recovering its performance
after encountering challenging samples during adaptation, which can eventually lead to catastrophic forgetting.
Therefore, a source-free HAR approach requires an adaptive stop fine-tuning method, improving adaptation
efficiency and reducing unnecessary computational costs. To address this problem, we leverage the DIG to
quantify the stop time with the largest DIG. Moreover, we utilize a stochastic restoration method that restores
weight from the pre-trained model to support long-time adaptation.

Firstly, we utilize a stochastic restoration method [52] that restores weight from the pre-trained model:

𝑊𝑡+1 = 𝑀 ⊙𝑊0 + (1 −𝑀) ⊙𝑊𝑡+1, (7)

where 𝑀 ∼ Bernoulli(𝑝), ⊙ denotes element-wise multiplication, 𝑊0 denotes the source weight, 𝑊𝑡+1 denotes the 
trainable parameters, and 𝑀 is a mask tensor. To maximize the model’s utilization of high-quality unlabeled data 
from new users, we stop fine-tuning at the maximum value after removing a significant outlier from the DIG 
distance. As shown in Algorithm 1, combining the discrepancy information by Gramian with adapting source 
model leads to MobHAR framework.

4 EVALUATION
To evaluate whether MobHAR can customize personalized models on mobile devices while preserving user 
privacy, we tested it on non-independent and identically distributed (non-IID) data distributions. As shown in 
Table 2, we summarize the factors contributing to the distribution shift based on five diverse datasets: HHAR [44], 
UCI [39], Motion [30], Shoaib [42], and USC [60]. These factors are categorized into four user characteristics: 
position, location, age, and devices. The term position refers to the placement of the device on the body, while 
location indicates that participants exhibit various body types and behavioral patterns. This diversity allows us 
to thoroughly evaluate the adaptability of MobHAR across different user activities and settings.

4.1 Experiment Information
4.1.1 Datasets. HHAR [44]. This dataset includes accelerometer and gyroscope measurements from 9 users 
performing 6 different activities (sitting, standing, walking, upstairs, downstairs, biking) with 4 types of mobile 
phones (3 Samsung Galaxy models, 1 LG model), worn around their waists.
UCI [39]. Comprising raw accelerometer and gyroscope data, this dataset was collected from 30 Italian 

volunteers, aged 19 to 48, capturing six basic activities (standing, sitting, lying, walking, downstairs, upstairs) at 
50 Hz with a Samsung Galaxy S II on the waist.

Motion [30]. Utilizing an iPhone 6, this dataset collected time-series accelerometer and gyroscope data at 50 
Hz from 24 UK participants engaged in six activities (sitting, standing, walking, upstairs, downstairs, jogging), 
with the device in front pockets.
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Table 2. Summary of experiment setups.

Dataset Factors resulting in the distribution shift Time per user
(minute)Position Location Age (year) Device

HHAR [44] Waist Denmark 25∼30 LG Nexus 4, Galaxy
-S3/ -S3 mini/ -S plus 25

UCI [39] Waist Italy 19∼48 Galaxy S II 4
Motion [30] Front pocket UK 18∼46 iPhone 6S 18.5∼29

Shoaib [42]
Right/left pocket,
belt, right arm,
right wrist

Netherlands 25∼30 Samsung
Galaxy S II 15∼20

USC [60] Front right hip USA
(California) 21∼49 MotionNode 240

Shoaib [42]. This dataset features 10 male participants performing activities like sitting, standing, walking,
upstairs, downstairs, jogging, and biking, with five Samsung Galaxy SII phones placed at various body locations
(right pocket, left pocket, belt, upper arm, wrist), recording at 50 Hz.

USC [60]. Capturing data from 12 activities (walking, running, jumping, sitting, standing, sleeping, elevator),
this dataset involves 14 diverse participants, with accelerometer and gyroscope readings taken at 100 Hz.

To demonstrate the versatility ofMobHAR, we choose four prevalent activities (still, walk, upstairs, downstairs)
from five diverse datasets, echoing UniHAR’s approach [55]. This unified dataset showcases a broad spectrum
of factors—ages, devices, body positions, types, habits—and adopts unified labels for these activities, revealing
varying distributions across datasets.

4.1.2 Metrics. We evaluate the performance of MobHAR with average F1-score and accuracy of users in the
target domain, which are defined as 𝐹1 =

∑
𝐹1𝑖 , 𝐴𝑐𝑐 =

∑
𝐴𝑐𝑐𝑖 , s.t. 𝑖 ∈ D𝑡 , where 𝐹1𝑖 and 𝐴𝑐𝑐𝑖 are the activity

classification F1-score and accuracy of the 𝑖-th user, respectively. Due to the fact that the F1-score, being the
harmonic mean of precision and recall, offers a more comprehensive assessment of the model’s performance,
particularly effective in dealing with imbalanced class distributions, we choose to utilize the F1-score as the
primary metric for evaluation.

4.1.3 Baseline Methods. To assess the performance of MobHAR in customizing personalized models for new
users, we benchmark it against five pertinent baseline methods:
OFTTA [53] uses conventional and test-time batch normalization (TBN) to extract stable features across

domains, with TBN effectiveness diminishing progressively at deeper network layers.
TAST [20] leverages multiple adaptation modules, each randomly initialized, to harness useful information

from nearest neighbors for classifying test data experiencing domain shifts.
TENT [49] fine-tunes pre-trained models by dynamically adjusting normalization statistics and channel-wise

affine transformations based on test batch entropy minimization.
SAR [32] introduces a dual approach to enhance test-time adaptation: first by filtering out noisy samples with

high gradient magnitudes, and then by nudging the model towards flat minima to ensure stability against residual
noise.

UniHAR [55] embeds a range of data augmentation strategies within a self-supervised learning framework to
tackle data diversity issues, necessitating that new users upload their features or raw data to a cloud server.
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Table 3. Performance comparison: Multi-source to single-target. (The two numbers in each cell are accuracy and F1-score.)

Source
data Method HHAR UCI Motion Shoaib Average

Acc, F1 Acc, F1 Acc, F1 Acc, F1 Acc, F1

With UniHAR [55] 73.8 64.5 89.0 81.9 79.2 68.3 77.7 72.3 79.93, 71.75
CrossHAR [55] 76.19 - 88.68 - 78.26 - 73.67 - 79.2, -

Without

OFTTA [53] 62.9 50.2 86.4 76.6 79.8 57.9 69.3 61.0 74.6, 61.43
TENT [49] 64.0 51.6 89.2 81.8 82.1 61.7 70.8 63.9 76.53, 64.75
SAR [32] 63.6 51.8 86.1 77.1 82.8 62.6 65.9 56.1 74.6, 61.9
TAST [20] 60.4 48.6 87.8 79.4 81.6 61.8 69.8 60.3 74.9, 64.53

MobHAR (Ours) 85.4 79.5 96.5 94.2 81.2 71.0 78.2 73.5 85.33, 79.55

CrossHAR [18] initially builds a pre-trained model using a self-supervised approach with augmented data, 
and subsequently fine-tunes the model with partially labeled data from the source-domain dataset.
To evaluate MobHAR’s performance under different discrepancies between general and personalized models, 

we conduct cross-dataset evaluations using both single-source and multi-source pre-trained models. In the single-
source setup, characterized by significant distributional disparity, MobHAR transfers models from the HHAR 
dataset to other unlabeled datasets including UCI, Motion, Shoaib, and USC. Conversely, in the multi-source 
scenario, designed to reduce the gap between general and personalized models, MobHAR utilizes models trained 
on a combination of UCI, Motion, and Shoaib datasets adapted to the HHAR dataset. For both strategies, 10% of 
users in the source domain are selected as a validation set based on training loss, helping to optimize the choice 
of pre-trained models. Users in the target domain, possessing only unlabeled IMU data, download pre-trained 
models to customize their own HAR model.

4.2 MobHAR for Human Activity Recognition
4.2.1 Cross-dataset Evaluation of Multi-source Single-target. Table 3 compares the performance of MobHAR and 
other baseline models in the multi-source setup. The two numbers in each cell denote average accuracy and 
F1-score, respectively. We divide our baselines into two groups based on the presence of source domain data: 
source data-based and source-free. Source data-based methods contain UniHAR[55] and CrossHAR [18]. Source-
free methods contain OFTTA [53], TAST [20], SAR [32], and TENT [49]. In the multi-source to single-target 
scenario, the pre-trained model is built on multiple datasets, omitting both the target dataset and USC. This 
method preserves a setting similar to CrossHAR, facilitating a fair comparison. As shown in Table 3, the source 
data-based methods have higher performance than SOTA source-free methods. This is because source data-based 
methods include source domain data, which helps facilitate the alignment between source and target domain 
data when addressing the distribution shift. Comparing with source data-based methods, MobHAR outperforms 
the best of baselines by 5.4% in terms of accuracy and 7.8%. For the source-free methods, the elimination of 
distribution shift can only rely on the unlabeled target domain users. However, the source-free method is more 
practical, as source domain data is often unavailable to end users. MobHAR achieves 85.33% average accuracy and 
79.55% F1-score, outperforming the best of the four baselines. Although SAR delivers the best performance in the 
case of transferring from HHAR, UCI, and SHOAIB to MOTION, it is shown to be sensitive to the source domain 
datasets and performs much lower in other cases. For example, SAR achieves only 63.6% in terms of accuracy
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Fig. 6. Overall performance of each method on different datasets comparison: Single-source to single-target. (The ’Average’
is the average of a specific method across four datasets.)
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when transferring from UCI, MOTION, and SHOAIB to HHAR. Comparing with source-free methods, MobHAR
outperforms the best of baseline by 14.76 % in terms of F1-score and 8.8% in terms of accuracy.
In summary, MobHAR can customize personalized models in a source-free manner.

4.2.2 Cross-dataset Evaluation of Single-source Single-target. Figure 6 compares the performance ofMobHAR and
other baseline models (Sec.4.1) in the single-source setup. We leverage four source-free methods as our baseline,
i.e., OFTTA [53], TAST [20], SAR [32], and TENT [49]. As shown in Figure 6, OFTTA has higher performance

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.



22:14 • Xue et al.

Hhar Uci Motion Shoaib Average
Dataset

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Before augmented by Unihar

Hhar Uci Motion Shoaib Average
Dataset

60

70

80

90

100 After augmented by Unihar

OFTTA SAR TAST TENT UniHAR MobHAR

Hhar Uci Motion Shoaib Average
Dataset

50

60

70

80

90

100

F1

Before augmented by Unihar

Hhar Uci Motion Shoaib Average
Dataset

50

60

70

80

90

100 After augmented by Unihar

Fig. 9. Impact of data augmentation.

than other source-free methods, i.e., TAST, SAR, and TENT. This is because the OFTTA is specifically designed 
for IMU data while other source-free methods are designed for image data. In contrast, MobHAR achieves 76.77%
average accuracy and 67.03% F1-score, outperforming the best of four baselines by at least 17.43% in terms of 
F1-score and 9.77% in terms of accuracy. Figures 8 and 7 present the performance of MobHAR and other baseline 
models (see Sec. 4.1) in the single-source setup, detailing accuracy and F1-score, respectively. As shown in Figure 
8 and 7, we can see that when the source domain is HHAR, MobHAR can get the best performance than other 
source domains. This is because MobHAR leverages the high quality of target unlabeled data to mitigate the 
distribution shift caused by unseen new user data. Consequently, when the pre-trained model is trained on 
cleaner data, it becomes more effective at customizing a source-free HAR model. Although SAR delivers the best 
performance in the case of transferring from MOTION to USC, it is shown to be sensitive to other cases and 
performs much lower in them. Similarly, OFTTA can also achieve the best performance in the case of transferring 
from USC to UCI. In summary, the results demonstrate the remarkable performance of MobHAR in mitigating 
significant domain shifts, enabling the customization of personalized models in a source-free way.

4.3 Sensitivity, Model Size and Latency, and System Overhead
4.3.1 Sensitivity: Impact of Data Augmentation. Since MobHAR utilizes different data augmentation strategies to 
assess the quality of unlabeled data. Thus, in this section, we assess how various data augmentation methods 
affect the customization of personalized models under four distinct target domains: HHAR, UCI, MOTION, and 
SHOAIB. In addition, the corresponding source pre-trained model draws from different datasets without the 
target dataset and USC, which is because of fair comparison with the baselines. Specifically, we evaluate the 
impact of data augmentation by comparing MobHAR with five baseline methods, i.e., OFTTA, SAR, TAST, TENT, 
UniHAR.
Figure 9 showcases the impact of different data augmentation strategies on MobHAR ’s performance. Results 

clearly demonstrate that data augmentations contribute differently to the efficacy of MobHAR. Comparing the 
performance between after and before data augmentation of UniHAR, there is a slight improvement for SOTA 
test-time adaptation methods, i.e., OFTTA, SAR, TAST, and TENT. As shown in Figure 9, the UniHAR has a higher 
performance than OFTTA. This is because UniHAR can get the source domain data to improve the HAR model’s 
performance. Without acquiring the source domain data, MobHAR gets a high performance under source-free 
scenarios with only high-quality data from them.

4.3.2 Sensitivity: Impact of Selecting High-Quality Data. As described in Section 2.4, MobHAR leverage DIG 
to quantify the relationship between the target domain and the source domain samples, achieving the goal of
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Fig. 10. Impact of selecting the appropriate pre-trained model.
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Fig. 12. Impact of data quality.

selecting high-quality unlabeled data. Thus, in this section, we will show the impact of selecting high-quality
unlabeled data into two parts:
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(i) selecting optimal authentic-virtual data pairs,
(ii) selecting the top ten percent of authentic-virtual data pairs in each batch.
To evaluate (i), we leverage multiple-source datasets to a single-target dataset. For instance, as shown in the

’Mul To UCI’ subfigure of Figure 11, the source domain is a  combination of the Shoaib, Motion, and HHAR 
datasets. The target domain is the UCI dataset. Specifically, MobHAR first augments unlabeled data and then 
selects the most appropriate variants by assessing their minimum DIG values. Therefore, we demonstrate both 
the ratio of each augmentation strategy and the performance of MobHAR across different fine-tuning epochs. As 
depicted in Figure 11, MobHAR can select different augmentation methods to generate variations, which vary 
across fine-tuning epochs. Moreover, as we can see, the normalization method has the highest ratio among these 
augmentation strategies, followed by sample warping. Additionally, the ratios of other methods are similar.

To assess point (ii), whether high-quality unlabeled data identified by MobHAR enhances the generalization of 
the HAR model, we evaluate various levels of data quality within non-IID settings of HAR, including single-source 
to single-target datasets and multiple-source to single-target datasets. The data for the new user is categorized 
into four types: fully optimal authentic-virtual data (Closest), fully suboptimal authentic-virtual data (Farthest), 
minimal authentic-virtual data (None), and partial authentic-virtual data (Ours). As shown in Figure 12, high-
quality data within non-IID settings of HAR demonstrates the highest performance in terms of both accuracy and 
F1-score. This means that MobHAR can effectively evaluate the quality of unlabeled data for various new users.

4.3.3 Sensitivity: Impact of Selecting the Suitable Pre-trained Model. This section assesses the impact of choosing 
the right pre-trained models. Pre-trained models are typically halted at the minimum validation loss point [55]. 
Nonetheless, there is a prevailing view that extended training could undermine generalization even though it 
improves performance on a specific validation dataset [58]. A generic pre-trained model may not fit every new 
individual user’s needs. To assess the impact of pre-trained models, we generate customized models from those 
exhibiting varying validation loss levels. Recognizing that various model parameters yield different results for 
unseen users, we maintain a selection of multiple pre-trained models to enhance the generalization ability of 
our HAR system. MobHAR employs the DIG to identify the optimal model parameters from a pool of candidates 
tailored for each new user. Specifically, MobHAR adopts the DIG method to identify the appropriate pre-trained 
model based on the minimum distance. Figure 10 illustrates how the performance of customized personalized 
models can differ based on the choice of pre-trained models. As shown in Figure 10, MobHAR effectively identifies 
and selects a good-fitting pre-trained model, leading to significant performance improvements. For instance, as 
depicted in Figure 10, the accuracy gap among different pre-trained models can be larger than 7.5% and 7.2%
with respect to F1-score. The experiments demonstrate that DIG in MobHAR serves as an effective metric for 
quantifying the compatibility between a HAR model and an unseen user’s data.

4.3.4 Sensitivity: Impact of Model Architecture. This section explores the impact of model architecture, i.e., DCNN, 
OFTTA, and MobHAR. As depicted in Figure 13, we evaluate different model architectures from multi-source to 
single-target domain. Compared to raw DCNN performance as reported in [55], MobHAR improves the accuracy 
from 59.4% to 75.8%, F1-score from 43.8% to 65.875%. It is clear that DCNN has the lowest improvement, and 
the performance is near in average of OFTTA and LIMU-BERT in accuracy. Moreover, in terms of F1-score, 
LIMU-BERT is slightly better than OFTTA. Therefore, we select LIMU-BERT as our basic model architecture.

4.3.5 Sensitivity: Impact of Stopping to Prevent Overfitting. This section explores the efficacy of implementing 
timely stopping strategies to curb overfitting, a phenomenon where the HAR model overlearns from unlabeled 
data. As depicted in Figure 14, prolonged adaptation leads to a decline in model performance. To counteract this, 
we implement two approaches: stochastic parameter restoration from the initial pre-trained model and strategic, 
timely stopping, further explained in Sec. 3.2.3. The essence of this strategy revolves around pinpointing the 
precise moment to cease the adaptation process. We leverage the DIG to gauge the correlation between the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 1, Article 22. Publication date: March 2025.



MobHAR: Source-free Knowledge Transfer for Human Activity Recognition on Mobile Devices • 22:17

Hhar Uci Motion Shoaib Average
Dataset

75

80

85

90

95

A
cc

ur
ac

y 
(%

)

DCNN OFTTA MobHAR

Hhar Uci Motion Shoaib Average
Dataset

60

70

80

90

F1

Fig. 13. Performance of each method on different mode architectures.

0 5 10 15 20 25 30
Adapting Epochs

75

80

85

90

Pe
rc

en
t (

%
)

Dataset (Target HHAR)

0 5 10 15 20 25 30
Adapting Epochs

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0 Dataset (Target UCI)

0 5 10 15 20 25 30
Adapting Epochs

65

70

75

80

85

Dataset (Target MOTION)

0 5 10 15 20 25 30
Adapting Epochs

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Dataset (Target SHOAIB)

200

300

400

500

600

210

220

230

240

350

400

450

400

500

600

Di
st

an
ce

 S
um

Acc F1 Distance_sum Selected

Fig. 14. Adaptivly stop based on DIG.

Table 4. System overhead (Iphone14-Pro, CPU, T4 GPU).

Model Pre-trained Adapt Infer Iphone14-Pro

Latency User / 9.05 s 36.6 ms 13.75ms

Server (T4) 157 ms / / /

Size 311KB × 11 311KB 311KB 311KB

New
user

CPU / 41.27 % 30.29 % 11.6 %

Memory / 736.82 MB 333.58 MB 47.5MB

adapted model and the unlabeled data effectively. Figure 14 confirms that MobHAR successfully identifies the
optimal stopping point across various scenarios listed in Table 3.

4.3.6 System Overhead. To evaluate system overhead, we utilize a smartphone, the Iphone14-Pro, and a laptop
powered by a 12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz CPU.
Latency. Table 4 details the latency experienced by MobHAR on the user’s side. The adaptation phase for

the pre-trained model, sourced from a server, requires about 9.05 seconds. In contrast, performing inference
on a batch of HAR model samples is notably quicker, at just 36.6 milliseconds. Notably, this pre-trained model
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Table 5. Efficiency comparison (T4 GPU).

Model Para. FLOP Size Time

Train Infer

DCNN 16.59 K 334.72 K 73 KB 4.1 ms 0.7 ms
LIMU 60.74 K 3.16 M 247 KB 17.3, 18.7 ms 5.2 ms

UniHAR 16.4 K 272.16 K 75 KB 8.5, 9.3 ms 2.6 ms

OFTTA 615.7 K 30.13 M 311 KB 23.9, 2.6ms 2.4 ms
TENT 562.18 K 60.64 M 311 KB 23.9, 29.5 ms 15.7 ms
SAR 562.18 K 60.64 M 311 KB 23.9, 49.1 ms 11.6 ms
TAST 617.49 K 30.48 M 311 KB 23.9, 1.5 ms 1.4 ms

MobHAR 47.65 K 3.43 M 255 KB 157, 2473 ms 5.1 ms

undergoes a training session for a single batch on an NVIDIA T4 Tensor Core GPU, clocking a training duration 
of 157 milliseconds.
Computation. Computational tasks are executed entirely on the user’s device. Initially, the user downloads 

pre-trained models, with each model sized at 311 KB, cumulatively amounting to 3.34 MB for eleven models. 
Subsequently, the user undertakes the local customization of a HAR model. This process, encompassing both 
adaptation and inference, imposes a CPU load of approximately 41.27% and utilizes around 736.82 MB of RAM. 
Following this, ongoing inferences by the tailored HAR model demand about 30.29% CPU usage, while memory 
consumption drops to roughly 333.58 MB.

4.3.7 Model Size and Latency. Table 5 offers a detailed comparison of MobHAR against baseline models, evaluating 
parameters such as the number of parameters, model size, floating-point operations per second (FLOPs), training 
time, and inference time. Training time is defined as the duration required by the server to train a mini-batch of 
64 samples, and inference time is the time taken to process a single IMU sample on the NVIDIA T4 Tensor Core 
GPU. Notably, MobHAR ’s training time is linked to the pre-training done by the server.
Illustrated in Table 5, MobHAR demonstrates a higher parameter count compared to server-based solutions 

like DCNN and UniHAR. However, against user-side models like OFTTA, TENT, SAR, and TAST, MobHAR stands 
out with the smallest footprint—47.65K parameters, 3.43M FLOPs, and a model size of 255K. Despite MobHAR 
requiring more time to tailor a HAR model for a specific user, it impressively processes inferences in just 5.1ms, 
thanks to an architecture that mirrors those detailed in [55, 56].

5 RELATED WORK

5.1 Human Activity Recognition
The human activity recognition [14, 15, 27, 57] has significant application prospects in various fields, such as 
healthcare [54], smart home [3], and spots training [33]. Current HAR models [21, 45] assume that data conforms 
to the concept of being independent and identically distributed [50]. However, individual differences (such as 
age, body type, and behavioral habits) lead to data from different individuals not meeting the IID assumption, 
also known as domain shift, significantly undermining the generalizability of the HAR model. We categorize the 
current solution for improving the HAR model’s generalizability into solving IID with source domain data and 
solving IID without source domain data.
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Table 6. Impact of target users wearing position ("→" denotes from ’source’ to ’target’ domain).

Scene1: front right hip to waist Scene2: waist to waist
USC→HHAR (20 min) USC→UCI (4 min) UCI→HHAR HHAR→UCI
F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy
75.8% 81.6% 74.5% 85.1% 74.5% 81.4% 90.4% 94.2%

Scene3: front pocket to
right/left pocket, right arm/wrist, leg, belt

Scene4: front pocket, waist-HHAR, waist-UCI to
right/left pocket, right arm/wrist, leg, belt

Motion→Shoaib HHAR, UCI, Motion→Shoaib
F1-score Accuracy F1-score Accuracy
71.5% 76.4% 73.5% 78.2%

5.2 Solving Non-IID with Source Domain Data
To improve the HAR model’s generalizability, a straightforward idea is transferring source-domain knowledge to
the target domain in themodel training phase. Domain generalization (DG) involves learning a generalizable model
on the source domains and directly applying it to new users [28, 34, 37]. GILE [34] eliminates domain-specific
representations using DG to enhance the performance of the HAR model. AFFAR [37] combines domain-specific
and domain-invariant representations to enhance the generalization of the HAR model.
To enhance the practicality of eliminating domain shift, domain adaptation (DA) incorporates target domain

data during the training phase [6, 24]. HDCNN [24] dynamically adjusts weights from various distributions. Chang
et al. [6] propose aligning the features of both the source and target domains to enhance the robustness against
diverse wearables. UniHAR [55] combines self-supervised and supervised training to address heterogeneity in IMU
data. Self-supervised training utilizes both source and target domains on the server side, while supervised training
focuses on the source domain. CrossHAR [18] solves the IID using partial labeled data from the source-domain
dataset.
However, acquiring data from the target domain can be challenging during the training phase due to the

complexities of downstream tasks and privacy concerns. As mentioned in [10, 61], if the HAR model does
not utilize target data, it may be overly optimistic to expect the model to generalize effectively to an unseen
distribution.

5.3 Solving Non-IID without Source Domain Data
Since obtaining data from the target domain poses challenges due to the complexity of downstream tasks or
privacy considerations, many researchers are now exploring a challenging and practical solution that adapting the
source-domain trained model with unlabeled target domain data [13, 23, 32, 49, 53]. In this paradigm, also known
as test-time adaptation, the source-domain knowledge is transferred to the target domain without accessing the
source-domain data during the inference phase. SAR [32] employs reliable entropy minimization and sharpness-
aware minimization to achieve more stable adaptation. TAST [20] leverages useful information from nearest
neighbors for classifying test data experiencing domain shifts. Tent [49] enhances the model’s confidence by
reducing prediction entropy and dynamically updating normalization statistics on a per-batch basis. OFTTA [53]
adjusts exponential decay test-time normalization and linear classifier simultaneously to adapt for cross-person
activity recognition.
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6 DISCUSSION
Impact of a Suitable Pre-trained Model. The fundamental concept of DIG is to evaluate the distance between 
general and personalized models. By reducing this distance through adjustments using the user’s unlabeled data, 
we can mitigate the distribution shift caused by user variances. However, if the pre-trained model is significantly 
inadequate, reflecting a large domain disparity, our ability for improvement is constrained, revealing limitations 
in handling certain scenarios.

Impact of Stopping Adaptation. As depicted in Figure 14, while our stopping criteria can result in suboptimal 
outcomes, attaining the optimal result remains challenging. For instance, optimal outcomes are achievable in both 
the UCI and SHOAIB target domains but not in the MOTION domain. Extended adjustments lead to the model 
internalizing our decision criteria, reducing domain disparities but diminishing returns, which can ultimately 
become detrimental.
Impact of Target Users Wearing Position. In reality, users may change device positions during use. As 

shown in Table 6, we evaluate the performance of MobHAR in three scenes about different positions. According 
to the results in scene3, after adaptation, the HAR model can work on multiple different positions compared 
with the position from source domain, reaching 71.5% F1-score and 76.4% accuracy. This is because MobHAR can 
enable source-free knowledge transfer from the pretrained HAR model, resulting in implicit generalization in 
target user data. Based on the results of scene4, the pretrained HAR model with multiple positions can enhance 
the generalization in target user data. Moreover, according to the results in scene2, the same device location has 
good performance since the distribution gap is lower in domain shifts. Thus, users can change their wearing 
position during use.

Impact of Minimum Amount of Initial Data. As shown in scene1 of Table 6, for the same wearing position 
of target users, the performance of MobHAR after adaptation is similar for both UCI and HHAR. Since the average 
time of each user is 4 minutes for UCI and 25 minutes for HHAR, therefore, the minimum initial data suitable for 
a new user lasting 4 minutes. The model can continuously update if new data becomes available according to the 
DIG values. However, since there are no fixed DIG values for all users to stop updating the HAR model, currently, 
MobHAR cannot trigger the update process. A potential trigger can be a fixed time, i.e., one week, one month, or 
one year, which can be evaluated using larger and more complex in-the-wild activity datasets [5].

7 CONCLUSION
To achieve personalized models on mobile devices with user privacy intact, we introduce MobHAR, a pioneering 
source-free HAR customization framework based on an adversarial mechanism that enables source-free knowledge 
transfer. We design a unique auxiliary tool called DIG to evaluate the quality of unlabeled data. Building on DIG, 
we select high-quality unlabeled data for fine-tuning the HAR model using minimum DIG and determine whether 
this data is adequate to conclude the fine-tuning process using maximum DIG. Comprehensive evaluation shows 
that MobHAR enables the customization of personalized models on mobile devices while maintaining stringent 
privacy safeguards.
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8 APPENDIX

8.1 A Detailed Derivation of the DIG Formulation
Let 𝑥𝑝𝑡 ∼ 𝑃𝑡,𝑝 and 𝑥

𝑝

𝑡𝑎 ∼ 𝑃𝑡𝑎,𝑝 denote the 𝑝-th order representation derived from the unseen target user distribution
𝑃𝑡,𝑝 and the augmented distributions 𝑃𝑡𝑎,𝑝 of the user, respectively. MobHAR calculates representations in
feature space without making any assumptions about 𝑃𝑡,𝑝 and 𝑃𝑡𝑎,𝑝 . Specifically, MobHAR derives discriminative
information from the statistical moments of 𝑃𝑡,𝑝 and 𝑃𝑡𝑎,𝑝 [4]. Based on 𝑥

𝑝

𝑡 and 𝑃𝑡,𝑝 , we can calculate the second
raw moment as follows:

𝐸

(
𝑥
𝑝

𝑡 𝑥
𝑝𝑇

𝑡

)
= 𝐸 (𝑥𝑝𝑡 )𝐸 (𝑥

𝑝

𝑡 )𝑇 + 𝐸 [(𝑥
𝑝

𝑡 − 𝜇
𝑝

1 ) (𝑥
𝑝

𝑡 − 𝜇
𝑝

1 )
𝑇 ]

= 𝜇
𝑝

1 𝜇
𝑝𝑇

1 + 𝜎
𝑝

1 ,
(8)

where 𝜇
𝑝

1 and 𝜎
𝑝

1 denote the mean vector and the covariance matrix of 𝑥𝑝𝑡 . According to Equation 2, we can
obtain the Gramian information of 𝑥𝑝𝑡 as𝐺𝑥

𝑝

𝑡
= 𝑥

𝑝

𝑡 𝑥
𝑝𝑇

𝑡 . Therefore, combining with Equation 8, we can derive that
𝐸 (𝐺𝑥

𝑝

𝑡
) = 𝐸 (𝑥𝑝𝑡 𝑥

𝑝𝑇

𝑡 ) = 𝜇
𝑝

1 𝜇
𝑝𝑇

1 + 𝜎
𝑝

1 . Similarly, we can obtain 𝐸 (𝐺𝑥
𝑝

𝑡𝑎
) = 𝜇

𝑝

2 𝜇
𝑝𝑇

2 + 𝜎
𝑝

2 , where 𝜇
𝑝

2 and 𝜎𝑝

2 denote the
mean vector and the covariance matrix of 𝑥𝑝𝑡𝑎 . After this, we can define the DIG as a view of statistical moments:

𝐷𝐼𝐺 (𝑃𝑡 , 𝑃𝑡𝑎) = 𝐸𝑝 [𝐸 (𝐺𝑥
𝑝

𝑡
) − 𝐸 (𝐺𝑥

𝑝

𝑡𝑎
)]

= 𝐸𝑝 [𝜇𝑝1 𝜇
𝑝𝑇

1 − 𝜇
𝑝

2 𝜇
𝑝𝑇

2 + 𝜎
𝑝

1 − 𝜎
𝑝

2 ],
(9)

where 𝑃𝑡 denotes a collection of the representations from the unseen target user distribution with elements of
different powers, and 𝑃𝑡𝑎 denotes that of the augmented distributions of these users.

8.2 A Detailed Derivation of Source-free Knowledge Transfer
To reduce the disparity between a general model and personalized models, we develop a structure based on
the pre-trained HAR model 𝑓 and a softmax layer as the classifier 𝑆 . Given 𝑌 human activity categories and
𝑁𝑢 samples from the unseen target user, the classifier 𝑆 can produce a prediction matrix 𝐻 ∈ R𝑌×𝑁𝑢 . For the
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self-correlation matrix of the HAR model’s prediction 𝑅 = 𝐻𝑇 𝐻 , 𝐻 satisfies
𝑌∑︁
𝑦=1

𝐻𝑖,𝑦 = 1,∀𝑖 ∈ 1 . . . 𝑁𝑢, and

𝐻𝑖,𝑦 ≥ 0,∀𝑖 ∈ 1 . . . 𝑁𝑢, 𝑦 ∈ 1 . . . 𝑌 .
(10)

Therefore, we denote the 𝐼𝑖 as
∑𝑌

𝑦=1 𝑅𝑖,𝑦 and the 𝐼𝑜 as
∑𝑌

𝑦≠𝑖 𝑅𝑖,𝑦 . According to Equation 10, 𝐼𝑖 and 𝐼𝑜 satisfy 𝐼𝑖 + 𝐼𝑜
= 𝑁𝑢 . Moreover, 𝐼𝑖 is the same as Frobenius-norm [7] of the HAR model’s prediction 𝐻 , i.e., ∥𝐻 ∥𝐹 . Therefore, we
can get 𝐼𝑖 − 𝐼𝑜 = 2 × ∥𝐻 ∥𝐹 − 𝑁𝑢 . Since the classifier 𝑆 produces 𝐻 , we can derive a loss function as

L𝑟𝑎𝑤−𝐹 = 2 × ∥𝑆 ∥𝐹 − 𝑁𝑢, (11)
which can give high scores for the samples with low distribution gap between the new user and pretrained
model’s training users and low scores for the samples with large distribution gap. According to Equation 11, both
the coefficients of the polynomial 2 and constant term 𝑁𝑢 are constant. Thus, we can simplify the Equation 11 as
L𝑟𝑎𝑤−𝐹 = ∥𝑆 ∥𝐹 .
Inspired by [1], to get high scores for the samples with a low distribution gap between the new user and

pretrained model’s training users and low scores for the samples with a large distribution gap, an intuitive method
is to learn a K-Lipschitz loss function ℎ. Using the 1-Wasserstein distance, we can get the distribution gap among
the unseen target user distribution 𝑃𝑡,𝑝 and the augmented distributions 𝑃𝑡𝑎,𝑝 of the user by

𝑊1 (𝑃𝑡,𝑝 , 𝑃𝑡𝑎,𝑝 ) = E𝑓 ∼𝑃𝑡,𝑝 [ℎ(𝑓 )] − E𝑓 ∼𝑃𝑡𝑎,𝑝 [ℎ(𝑓 )] . (12)
According to L𝑟𝑎𝑤−𝐹 = ∥𝑆 ∥𝐹 , ∥𝑆 ∥𝐹 can serve as a loss function. Therefore, the distribution gap between 𝑃𝑡,𝑝 and
𝑃𝑡𝑎,𝑝 can be written as:

𝑊𝑤 (𝑃𝑡,𝑝 , 𝑃𝑡𝑎,𝑝 ) = E𝑓 ∼𝑃𝑡,𝑝 [∥𝑆 ∥𝐹 ] − E𝑓 ∼𝑃𝑡𝑎,𝑝 [∥𝑆 ∥𝐹 ] . (13)
Since the discrepancy between 𝐼𝑖 and 𝐼𝑜 , as measured by the Frobenius-norm Wasserstein distance, may

overlook the classes with small samples [8], we use the Nuclear norm ∥ · ∥∗ to enhance prediction diversity
[7, 8]. To mitigate the need for repetitive alternating updates in the HAR model, we employ a gradient reverse
layer (GRL) [11], which facilitates updates within a single backpropagation step. As a result, MobHAR conducts
source-free knowledge transfer as follows:

L𝜃 𝑓 =𝑚𝑖𝑛{ 1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

(

𝑆 (𝑓 (𝑥𝑡𝑖 ))

∗ − 

𝑆 (𝑓 (𝑥𝑡𝑎𝑖 ))

∗)}, (14)

where 𝑓 denotes the pre-trained HAR model, 𝑁𝑢 denotes the number of samples from the unseen target user, 𝑥𝑡
denotes the sample from the unseen target user 𝑡 , 𝑥𝑡𝑎 denotes the augmentation data samples of 𝑡 , and 𝑆 denotes
the softmax layer.
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