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ABSTRACT
Tear Film Break-Up Time (TBUT) is a critical clinical pa-
rameter in the management of dry eye disease (DED). How-
ever, traditional TBUT assessments rely on costly and time-
consuming clinical procedures, while existing home-based
solutions fail to provide precise TBUT values. In this work,
we present Blinic, a contactless system leveraging commer-
cial millimeter-wave (mmWave) radar to predict precise
TBUT values and assess DED severity grades at home. Blinic
incorporates detailed blink kinematics that are closely linked
to TBUT. To address the challenge of predicting TBUT di-
rectly from radar data, we propose a teacher-student learning
framework. The teacher model, trained on electronic health
records (EHRs) including image-based diagnostic tests, trans-
fers medical insights to the student model, which uses radar-
captured blink dynamics. This knowledge transfer is further
enhanced by a fine-tuned large language model, DryEye-
LLM, which is based on clinical diagnostic reports and em-
ploys unsupervised domain adaptation to align EHRs with
radar data. To ensure accurate blink motion capture, Blinic
employs an antenna-coded MIMO mmWave radar design.
Additionally, a query-based multitask learning module simul-
taneously predicts TBUT and DED severity grades, address-
ing potential conflicts in feature representation. Evaluated
on 192 participants in collaboration with an eye clinic, Blinic
demonstrates achieving a mean absolute error of 2.73 sec-
onds for TBUT with an average accuracy of 90.54% for DED
grading in real-world settings, providing a practical solution
for home-based DED management.
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Figure 1: Overview of Blinic. Blinic uses a mmWave
FMCW radar to passively and contactlessly assess dry
eye progression via TBUT quantification.
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1 INTRODUCTION
Dry Eye Disease (DED), one of the most prevalent ocular
conditions and a leading cause of ophthalmological consul-
tations, affects an estimated 8.7% to 64% of the global pop-
ulation [32]. Its prevalence has significantly increased due
to factors such as aging and prolonged digital screen expo-
sure [32]. As a chronic condition, DED cannot be cured, and
patients must focus on managing symptoms to minimize its
impact on daily life. Tear Film Break-Up Time (TBUT) [7]
is an objective clinical parameter to evaluate the severity
of DED symptoms. It serves as a critical tool for adjusting
treatment plans to meet individual patient needs [42] in man-
aging DED [10, 24, 30, 43]. Given the modern lifestyle, which



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Xue and Xie et al.

often involves prolonged digital screen use, DED symptoms
can fluctuate rapidly. This symptom variability calls for fre-
quent TBUT assessments to ensure timely adjustments to
DED treatment [31].
Despite its importance in DED management, the tradi-

tional TBUT test relies on expensive clinical devices [6],
which is operated by ophthalmologists. These tests are only
available in clinical settings, are time-intensive, and incur
high costs. Additionally, they require significant patient co-
operation during the procedure. These limitations make fre-
quent testing and long-term TBUT monitoring impractical
[37], which fails to align with the needs of DED patients.
In response, several research works try to design home-

based dry eye assessment systems to support easy and prompt
DED management. SDE [45] proposes a millimeter-wave
(mmWave) radar-based system to classify subjects into dif-
ferent DED categories by analyzing the blink pattern. While
this work successfully demonstrates the feasibility of assess-
ing DED at home, it only achieves two-class classification to
differentiate DED patients from healthy individuals, without
the capability to measure TBUT. Tomeasure TBUT in a home
setup, DEDector [20] employs an external optical attachment
on a smartphone and uses optical image-processing meth-
ods to screen for abnormal TBUT. However, DEDector also
achieves only a two-class classification, distinguishing be-
tween normal and abnormal TBUT subjects, and it cannot
provide precise TBUT values, which are crucial for DED
management and medication adjustments.
In this work, we explore the feasibility of designing a

home-based solution to assess the exact TBUT values for bet-
ter DED management. Inspired by the previous work, SDE
[45], we opt to leverage mmWave radars to predict TBUT
from the captured eye blink dynamics, due to mmWave’s con-
tactless and privacy-preserving nature. Different from SDE
where coarse-grained blinking patterns were explored, we
observe from biomedical research that the detailed blinking
kinematics, such as incomplete blink frequency and eye-
closure speed, are closely related to the formation of ab-
normal TBUT [26, 32, 39] (see Section 2.3). These findings
suggest that incorporating blink kinematic features captured
from radars could potentially help to predict the precise
TBUT values.

Despite this biomedically-grounded approach, realizing
Blinic faces fundamental challenges.

▶ First, analyzing TBUT from blink kinematics is extremely
challenging since it involves a subtle biomedical process -
the break-up of an ultra-thin tear film, and only medical
equipment can precisely capture such a process. In fact, even
in clinics, assessing DED severity (characterized by TBUT) is
not straightforward. It requires multiple medical tests (such
as meibomian gland dysfunction (MGD) test [9, 36], tear
meniscus height (TMH) test [29] and etc.) to be administered
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Figure 2: Motivation for inferring TBUT by aligning
blink kinematic features with EHR data.

before the doctor can conclude the assessment. Therefore,
there is no simple solution to model the relationship between
blink kinematics and TBUT.

▷ Hence, in this work, we do not use an end-to-end solu-
tion to predict TBUT from radar-captured blink kinematics.
Instead, we gain insights from the clinical practice that uses
several intermediate tests to support the assessment. Specifi-
cally, we first design a teacher model that learns to predict
TBUT based on patients’ electronic health records (EHRs;
e.g., image-based TMH and MGD data), thereby mimicking
clinical DED assessment practices (see Sec. 2). Then, we de-
sign a student model with radar-captured blink kinematics as
the input, while the objective of this teacher-student scheme
is to force the blink features extracted from the student model
to align with the EHR features extracted from the teacher
model. In this way, we implicitly insert medical insights into
the student model to boost its TBUT prediction ability.

▶ Second, however, aligning blink and EHR features is
non-trivial. This is because of the large domain discrepancy
between EHR data and mmWave data in which EHR is struc-
tured and high-dimensional, while blink data is temporal
and low-dimensional.

▷ To narrow the gap between these two, we propose to
include text-based diagnostic reports in the training of the
above teacher model. The benefit of this design is that these
diagnostic reports associated with the MGD and TMH tests
are much easier to interpret than medical images due to the
natural language format. Therefore, including these diagnos-
tic reports should ease the alignment between the teacher
and student models. In this work, we develop a dry eye large
language model (DryEye-LLM) through prompt tuning with
the diagnostic reports and serve the embedding encoded by
DryEye-LLM to the teacher model. In addition, we leverage
an unsupervised domain adaptation approach to align the
teacher model trained on mmWave and EHR data with the
student model, which is trained on mmWave data only.

▶ Finally, realizing DED management at home still faces
a few practical issues that require special designs. (i) Using
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(a) Incomplete blinking
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(b) Double-peak
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(c) Prolonged EOP
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(d) Prolonged CDP
Figure 3: Synchronized DED-associated blinking patterns via mmWave radar and camera. Definitions: Eyelid
height (EH) 100% = fully open; early opening phase (EOP, EH: 0%→97%); closed phase (CDP, EH: 100%→0%).

mmWave radars to measure detailed blink kinematics is chal-
lenging due to their coarser granularity compared with the
tiny blink motions. (ii) It is a common clinical practice to
assess the TBUT value together with an assessment of the
DED severity grade, where these two can be sometimes para-
doxical, say the same TBUT but with different DED severity
grades.

▷ To solve the challenge (i), we design an antenna-coded,
multiple-input multiple-output (MIMO) mmWave radar sys-
tem to accurately measure blinking motions while eliminat-
ing environmental interference. To solve the challenge (ii),
we design a query-based multitask learning module to si-
multaneously predict these two metrics. This query-based
module can address the feature representation paradox in
co-learning of TBUT regression and DED severity grading,
where partial and total feature representations conflict.

In this work, we present Blinic, a fully passive and contact-
less DED management system that can assess TBUT and the
DED severity grade. As illustrated in Figure 1, Blinic is devel-
oped with a commercial off-the-shelf (COTS) mmWave radar,
together with the above algorithm designs. We collaborate
with an eye clinic and evaluate Blinic on 192 participants,
including 44 healthy subjects, 83 mild DED patients, and
65 severe DED patients. Additionally, the training of our
deep-learning models involves the EHRs of an extra 1119
DED patients. To our knowledge, this represents the largest
dataset scale in home-basedDED research to date. The results
confirm that Blinic can accurately assess DED in real-world
environments, achieving a mean absolute error of 2.73 sec-
onds for TBUT with an average accuracy of 90.54% for DED
grading.

We summarize our key contributions as follows.

• To the best of our knowledge, this work is the first to infer
TBUT from blink kinematics. We achieve TBUT assess-
ment with only a COTS mmWave radar, which supports
convenient and home-based DED management.

• We design a teacher-student learning scheme to distill the
pathological knowledge from EHR data to blink kinematics
captured by mmWave radar and develop a DryEye-LLM

fine-tuned by clinical reports to ease the knowledge trans-
fer.

• We also design algorithms to solve a few practical chal-
lenges, including an antenna-coded MIMOmmWave radar
scheme to acquire fine-grained spontaneous blink kine-
matics, and a query-based module for multi-task learning
module to co-learn the potential paradox feature represen-
tations of TBUT and DED grading.

• In collaboration with a hospital-based eye center, we eval-
uate Blinic on the largest DED dataset to date. The results
demonstrate that Blinic can accurately assess dry eye dis-
ease.

2 BACKGROUND AND MOTIVATION
2.1 TBUT Measurements
A key pathophysiological concept underlying dry eye disease
is the disruption of tear film homeostasis, characterized by
its accelerated break-up and instability [16]. The tear film,
formed during blinking through secretions from meibomian
glands (lipid layer), lacrimal glands (aqueous layer), and con-
junctival goblet cells (mucin layer), consists of three distinct
layers [32, 37]. Therefore, in clinical practice, measuring
TBUT serves as a crucial diagnostic examination, with tech-
niques evolving from Fluorescein Break-Up Time (FBUT)
to Non-Invasive Breakup Time (NIBUT) [7, 35]. The FBUT
uses an intrusive manner to stain the tear film and NIBUT
requires expensive medical equipment, such as the OCULUS
Keratograph® 5M [6].

When DED occurs, the structural integrity and functional
properties of the tear film undergo significant alterations
[44]. As illustrated in Figure 2, this process is driven by
a self-perpetuating cycle [11]: initial tear film instability
alters the ocular surface flora, leading to the release of lipase
and toxins. These substances induce eyelid inflammation,
which in turn modifies the lipid composition of the tear film.
This altered lipid composition further destabilizes the tear
film, thereby perpetuating the cycle and underscoring the
progressive nature of the disease.
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Figure 4: System framework of Blinic.

2.2 Blink Kinematics
Recent biomechanical studies [17, 19, 26, 32, 39, 44] have re-
vealed significant alterations in the blink patterns of patients
with DED. Spontaneous blinking is a natural, unconscious
action primarily used to maintain eye health, while reflexive
and voluntary blinking are responses to external stimuli or
actions controlled by the individual.
Based on the DED diagnostic consensus [44], blink clo-

sure analysis is a recommendation of appropriate tests for
diagnosis and assessment of dry eye. Morphological changes
in meibomian glands (e.g., atrophy, obstruction) directly in-
dicate the pathological process of DED. Additionally, TMH
serves as a critical clinical indicator for assessing tear volume
and distribution dynamics in dry eye examinations, where its
abnormality directly correlates with compromised tear film
functionality and signals underlying tear film disruption. As
shown in Figure 2, blink kinematic features [32] are related
to the vicious cycle of DED, such as incomplete blinking,
altered blink rate, and lid closing velocity. Given that mei-
bomian gland-secreted lipids maintain tear film integrity by
reducing evaporation, compromised lipid secretion leads to
accelerated tear film breakup. This consequently manifests as
increased incomplete blink frequency [26], thus establishing
incomplete blinks as a clinically quantifiable biomarker for
DED severity. An altered blink rate [19] has been validated to
be used to support dry eye disease diagnosis. A reduced eye
closure velocity [39] has been confirmed related to clinical
examinations, such as FBUT using a high-speed camera. Ad-
ditionally, incomplete blinking [17] is highly related to MGD.
Therefore, blink kinematic features could potentially surpass
the performance limitations of traditional TBUT measurement
techniques.

2.3 Motivation
Key idea. The frequency of hospital visits is primarily de-
termined by disease progression and treatment response
following initial diagnosis [16, 37, 44]. However, TBUT mea-
surements are still a daunting task in hospital visits due to the
large number of patients and the extensive medical resources

required. The recent surge in mobile device proliferation has
the potential to disrupt this stalemate. For example, prior
work [20] has shown the possibility of using portable devices
to measure TBUT values. However, a significant obstacle lies
in the absence of precise TBUT data essential for continuous
and systematic monitoring of disease progression. To solve
this problem, we harness the strong correlation between blink
kinematics and DED pathology in EHR data, which enables
accurate TBUT measurement solely through a COTS radar
device.
DED blink pattern captured by Blinic. To confirm

Blinic’s use of blink kinematics-DED pathology correlations
in EHR data, we analyze mmWave-derived features [39] un-
der the same setup as Section 6.1. Ground truth comes from
video-based eyelid height measurements (100% = fully open)
[39]. Figure 3 shows mmWave-captured DED patterns clini-
cally validated in studies: incomplete blinks, rapid blinking,
prolonged eyelid opening phase (EOP, from initial movement
to 97% open), and closed phase (CDP, from closure start to
reopening). As shown in Figure 3(a), incomplete blinking
refers to a condition where the eyelids do not fully close
during a blink, leaving part of the eye surface (usually the
lower portion of the cornea) exposed. As shown in Figure
3(b), the double-peak occurs in DED patients who have diffi-
culty forming a tear film, resulting in severe partial blinks.
As shown in Figures 3(c) and 3(d), prolonged EOP and CDP
occur in cases of DED. This demonstrates that Blinic can
effectively capture these DED-related blinking patterns.

3 DESIGN OVERVIEW
As illustrated in Figure 4, Blinic comprises four major com-
ponents, i.e., COTS radar, blink denoising, blink feature, and
analysis results.

• Antenna-coded MIMOmmWave radar. To capture sponta-
neous blinking, we design an antenna-codedMIMOmmWave
radar (Section 4.1).

• Blink kinematics extracting. To clarify blink kinematic
features, we design a series of noise removal algorithms for
blink motions signals (Section 4.2).
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• Teacher-student learning scheme. To statistically correlate
eyelid motion patterns with DED pathological biomarkers,
we propose a teacher-student structure that transfers clinical
EHR insights to mmWave-derived blink features (Section 5.1,
Section 5.2, Section 5.3).

• Query-based multi-task learning. To measure TBUT, we
design a query-based module using task-related attention to
extract specific outputs from blink features (Section 5.4).

4 CAPTURING BLINK KINEMATICS
Since conventional mmWave radar’s spatial resolution is in-
sufficient to detect submillimeter-scale motions induced by
blinks, we devise an antenna-coded MIMO mmWave radar
system for measuring spontaneous blinks coupled with in-
terference elimination.

4.1 Antenna-coded MIMO mmWave Radar
We use two steps to achieve antenna-coded MIMO mmWave
radar, i.e., antenna setup and MIMO radar.

• Antenna setup. We use a commercial mmWave radar
[1] to capture spontaneous blinks. Our choice of mmWave
is driven by: i) Cost-effectiveness and high resolution: the
radar’s core chip costs $40, yet achieves 0.5 ns temporal reso-
lution (at 1 GHz bandwidth), critical for detecting incomplete
blinks as brief as 5 ms [39]. ii) Privacy-safe contactless sens-
ing: widely adopted in industry [2–5] and academia [12, 13,
28, 34, 40, 47] due to non-intrusive design. iii) mmWave can
avoid occlusions caused by hair or glasses, whereas cameras
rely heavily on good lighting conditions. Moreover, mmWave
is more sensitive to the micro-motion of the eyelid (in the
range of centimeters tomillimeters) compared to smartphone
cameras, which are limited by pixel-based resolution. The
radar’s mmWave signal operates in the frequency range of
77 GHz to 81 GHz using frequency-modulated continuous
wave (FMCW) technology. The field of view (FOV) is 30◦
vertically and 120◦ horizontally. As shown in Figure 5, each
chirp has a ramp end time of 60 µs, an idle time of 100 µs,
512 sampling points, and a slope of 29.982MHz/µs.

Although mmWave radar achieves high temporal resolu-
tion, its spatial resolution remains limited. A widely adopted
strategy for enhancing spatial resolution involves expanding
the transceiver antenna array through MIMO configurations,
which effectively increases the virtual aperture size. However,
adding extra antennas significantly increases the complex-
ity and cost of mmWave front-end devices. Therefore, we
design an antenna-coded MIMO system to generate virtual
receivers by using a chirp-component time-division trans-
mission method. As shown in Figure 5, we use two antennas
to send a same chirp-component one time, which can im-
prove transmission gain of 3 dB compared to single-antenna.
By leveraging double antennas, the sending signals can be
denotes as 𝑆𝑎 = 𝑆𝑇1 + 𝑆𝑇2 , 𝑆𝑏 = 𝑆𝑇1 + 𝑆𝑇3 , and 𝑆𝑐 = 𝑆𝑇2 + 𝑆𝑇3
in a time-division manner. Moreover, the sending chirp 𝑆𝑇𝑥
can be denoted as:

𝑆𝑇𝑥 (𝑡) = 𝑒𝑥𝑝 (− 𝑗2𝜋 (𝑓𝑠 +
𝐵

2𝑇
𝑡)𝑡), (1)

where 𝑓𝑠 denotes initial frequency, 𝐵 denotes sweep band-
width, and 𝑇 denotes sweep time.

•MIMO radar. After configuring the multiple transmit-
ters, we can utilize the 4-receivers to achieve MIMO mech-
anism. As shown in Figure 6, we can turn the 4-receivers
into 12-receivers by MIMO mechanism. Let 𝑅𝑠𝑟 denote the
received signal from the 𝑠-th transmitter to the 𝑟 -th receiver,
where 𝑠 ∈ 1, 2, 3 and 𝑟 ∈ 1, 2, 3, 4. For instance, the signal 𝑅3

4
corresponds to transmission from transmitter 𝑇1 to receiver
𝑅4. The complete received signal model can be expressed as:

𝑅𝑠𝑟 (𝑡) =
𝑁∑︁
𝑖=1

𝛼𝑖𝑒𝑥𝑝 (− 𝑗2𝜋 (𝑓𝑠 +
𝐵

2𝑇
(𝑡 − 𝜏𝑖 ) (𝑡 − 𝜏𝑖 ))), (2)

where 𝑁 , 𝛼𝑖 , 𝜏𝑖 denote the number of multipath, attenua-
tion coefficient, 𝑖-th path of 𝑁 . For transmitted signals, the
received signals across the four receivers exhibit phase differ-
ences ranging from 0 to 3 𝜔 , where 𝜔 represents the angular
frequency modulation induced by the chirp waveform. Ac-
cording to our MIMO setup, the phase information can be
represented as:

𝜑 (𝑛) = (𝑛 − 1) × 𝑑 × 𝑠𝑖𝑛(𝜃 ), (3)
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(a) Signals under packets loss (b) Removing noise of packets loss (c) Surrounding noise (d) Removing surrounding noise
Figure 7: The removal of noise caused by packet loss and surrounding surfaces.

where 𝑛 denotes the virtual receiver numbers. Based on the
design of 𝑆𝑎 , 𝑆𝑏 , and 𝑆𝑐 , we can decode the signals received
at the receiver from different timestamps to separate the
transmitted signals from𝑇1,𝑇2, and𝑇3 as 𝑆𝑎+𝑆𝑏−𝑆𝑐

2 ,
(𝑆𝑎−𝑆𝑏+𝑆𝑐 )

2 ,
and −𝑆𝑎+𝑆𝑏+𝑆𝑐

2 . In this way, without increasing the number
of physical transmitting and receiving antennas, we achieve
virtual antenna pairs through the MIMO method, thereby
enhancing the spatial resolution of mmWave.

4.2 Blink Kinematics Extracting
We utilize two steps to extract blink kinematics, i.e., capturing
blinking and eliminating noise in blinking.
• Capturing blinking. Inspired by SDE [45], the frame

chirps variance (FCV) has a larger value on speed dimension
when there is blinking. Therefore, we can leverage their
findings to denote the distance between the user’s head and
mmWave radar. Specifically, based on the 𝑆𝑇𝑥 (𝑡) and 𝑅𝑥 (𝑡),
we can get the intermediate frequency (IF) of each virtual
receiver antenna as:

𝐼𝐹 (𝑡) =
𝑁∑︁
𝑖=1

𝛼𝑖𝑒𝑥𝑝

(
𝑗2𝜋 (𝐵(𝜏𝑖

2 − 2𝑡𝜏𝑖 )
2𝑇

− 𝑓𝑠𝜏𝑖 )
)
. (4)

Based on the 𝐼𝐹 (𝑡), we can get the position of user’s eyes
based on the FCV. Specifically, we first calculate the range-
Doppler information by applying a two-dimensional FFT, i.e.,
first performing a range FFT on 𝐼𝐹 (𝑡) with size 𝑅𝑓 = 1024,
followed by a Doppler FFT with size 𝐷 𝑓 = 249. Then, we cal-
culate the variance on the Doppler dimension, which denote
speeds. Finally, we sum the variance on the Doppler axis and
get the largest value, which denotes the position of user’s eye.
By applying an inverse transform to the velocity dimension
of the angular FFT (range-Doppler, 180) and calculating the
variance along this dimension, a blink image with angular
information can be obtained. Since the velocity dimension
is not easily perceptible, the velocity data is first converted
back to the original domain before calculating the variance.
As shown in Figure 7(b), we can observe continuous spon-
taneous blinking motion, where a high variance indicates a
blink and a low variance suggests no blink.

• Eliminating noise in blinking. After capturing con-
tinuous spontaneous blinking data, the remaining challenge
is how to remove noise in the blinking signals, i.e., noise
from packet loss, surrounding surfaces, and outliers.

▷ Noise caused by packet loss. Interference in the mul-
tipath environment can lead to inaccurate signal estimation,
causing errors between transmitted and received signals,
and resulting in packet loss. As shown in Figure 7(a), the
packet loss can bring much noise in blinking. To address
this issue, we first detect whether the received mmWave
signals contain packets with data equal to zero. Then, we
replace the zero packets’ mmWave data with the average of
the surrounding packets. As shown in Figure 7(a) and 7(b),
this approach helps to minimize the impact of zero packets
on the mmWave signals.

▷ Noise caused by surrounding surfaces. Except for
the target user’s reflected signals, the virtual receivers can
get other object’s reflection. As shown in Figure 7(c), at the
position of target user’s eye, different angles in the radar’s
FOV also have reflections. Therefore, we first calculate the
average value over a window length of 40 seconds after
removing zero packets, and then we count the number of
values that exceed this average. Finally, based on the observa-
tion that the blinking segments exhibit greater fluctuations
and contain more values above the average, we calculate the
center of spontaneous blinking. As shown in Figure 7(𝑑), to
signify the continuous spontaneous blinking, we reserve 70◦
around the center of blinking.

▷ Noise caused by outliers. To undermine abnormal
large values at 3 s as shown in Figure 8(a), we design a two-
level normalization. At the first-level normalization, we first
compute the signal peaks in Figure 8(a) and the median of
these peaks. Then, we use four hundred times the median
value as the threshold to reduce the effect of abnormal val-
ues. As shown in Figure 8(a) and 8(b), Blinic can effectively
undermine some large range of values. At the second-level
normalization, we improve the robustness of blinking by
normalizing signals to the range of 0 to 1.
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(a) Signals under outliers noise (b) After the first level normalization
Figure 8: The removal of noise caused by outliers.
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Figure 9: The teacher-student structure.

5 FROM BLINK KINEMATICS TO TBUT
After extracting blink kinematics from the mmWave data,
Blinic employs a deep-learning model to predict TBUT and
DED severity grading. However, as discussed in Section 1 and
Section 2, achieving this prediction is extremely challenging
due to the complexity of the assessment. Therefore, drawing
insights from the clinical practice and biomechanism of blink
kinematics, we first use various types of medical data to
train a teacher model. Then, we use this teacher model to
supervise the training of a studentmodel which involves only
the mmWave data with an unsupervised domain adaptation
(UDA) scheme.

5.1 Teacher-student Learning Scheme
Blinking kinematics reflect DED symptoms associated with
pathological mechanisms. However, a substantial informa-
tion disparity exists between clinical biomarkers (i.e., TBUT,
TMH, MGD) and blinking kinematic measurements. There-
fore, to bridge this gap, we design a teacher-student knowl-
edge distillation framework that transfers DED diagnostic
features from EHR to blink kinematic patterns.
As shown in Figure 9, the teacher model has the full-

modality data with labels regarding DED and the student has
only the blink kinematics from mmWave signals. The full
modal data of teacher’s contain X_mmWave, X_EHR, and
X_ClinicReport. The X_mmWave denotes blink kinematics
from mmWave radar, X_EHR denotes clinical examinations
of both TMH, and MGD, and X_ClinicReport denotes clinical
reports of clinical examinations, i.e., TBUT, TMH, and MGD.

5.2 Teacher Learning with Full Modal
Since the teacher model incorporates multiple modalities,
such as blink kinematics, EHR, and clinical reports, extract-
ing DED features from data with diverse structures and for-
mats presents a significant challenge. Inspired by the success
of large language models (LLMs) [15] in generalization, we
utilize LLM to promote teacher extracting DED features from
multimodal data. Specifically, we split the teacher learning
into two parts: two-phase LLM optimization: clinical report
fine-tuning and feature caching, multimodal learning for full
modal.

• Two-phase LLM optimization: clinical report fine-
tuning and feature caching. Recently, LLMs [15], as high-
capacity transformer-based architectures trained on massive
and diverse text corpora, have demonstrated exceptional gen-
eralization abilities across linguistic and reasoning tasks, par-
ticularly in contextual medical knowledge extraction. These
models contain a wealth of medical information, such as
that from college medicine. However, there are two issues
regarding the extraction of medical knowledge from the
model. First, general LLMs are not better than a specific dis-
ease model according to a recent study from Harvard [27].
Second, performing inference with LLMs incurs significant
latency and exhibits high memory consumption.
To address the first issue, we develop DryEye-LLM, a

domain-specific LLM for DED diagnosis, through prompt-
based fine-tuning on de-identified clinical reports. Specifi-
cally, we leverage the latest LLM model Flan-t5 [15] with 3
billion parametersas backbones to conduct prompt-tuning.
A patients’ diagnostic reports are fixed as "Prompt: [The first
TBUT time is 2.17s, and the average time is 3.50s, and the tear
meniscus is 0.25mm, Meibomian glands have openings that are
lost by more than 1/3.]" to minimize the variation of LLM’s
output. Then, we fine-tune DryEye-LLM using the format
fixed prompt by adding both an embedding layer after the
pretrained tokenizer of Flan-t5 and a linear layer after the pre-
trained encoder of Flan-t5. Thus, the prompt funing process
can be supervised by a loss of cross entropy. Additionally, to
optimize the fine-tuning process, we employ quantization,
converting the model’s parameters from high precision (e.g.,
32-bit floating-point) to lower precision (e.g., 8-bit integers).
The quantization method significantly enhances calculate
speed while simultaneously reducing memory footprint.
To address the second issue, we cached the feature ten-

sor from the fine-tuned DryEye-LLM instead of performing
feature inference for each participant. Specifically, we first
extracted feature tensors from the fine-tuned DryEye-LLM
using activation hooks. A forward hook was then attached
to the final_layer_norm layer of the transformer architec-
ture. The captured feature tensors with dimensions [1, 2048]
were subsequently cached. This approach enables efficient
teacher-student knowledge distillation while circumventing
the computational constraints of direct LLM deployment.
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taneous blink.

•Multimodal learning for fullmodal. Different clinical
examinations reflect the pathology of DED from different as-
pects, such as the Placido rings in the tear break-up time test,
the lower eyelid bands in the tear meniscus height measure-
ment, and the gland ducts in the meibomian gland function
analysis, resulting high dimension data. Inspired by Perceiver
[25], we use cross-attention to direct the model towards DED
features in multi-modal data. This mechanism also decouples
model depth from input size, enhancing compatibility with
the teacher model. After pre-fusing multimodal data, we
process features through 26 self-attention layers [18]. Depth-
wise weight sharing [25] further cuts trainable parameters.

As shown in Figure 10, the cross-attention mechanism has
two inputs, i.e., "Query" and "K, V attention". The "Query"
denotes the latent vector, which is the DED features. And,
the "K, V attention" denotes the multimodal input data, i.e.,
X_mmWave, feature tensors from DryEye-LLM, and X_EHR.
X_mmWave denotes blink data from mmWave signals as
shown in Figure 11 and X_EHR denotes the clinical examina-
tions data. Additionally, Blinic serializes the input data and
then add a Fourier transform feature to each modality’s infor-
mation to maintain the structured characteristics lost during
the serialization of the EHR data, such as the curved bands
in the lower eyelid area of the tear and height measurement.

5.3 Student Learning with mmWave
As illustrated in Figure 10, we implement a teacher-student
structure with unsupervised domain adaptation [46] to train
the student model exclusively on 𝑋mmWave data. To enforce
modality isolation, we apply a binary mask that nullifies
feature contributions from DryEye-LLM and 𝑋EHR in the stu-
dent’s input. The mask activates (1) for blink kinematics and
deactivates (0) for other modalities. We integrate a gradient

reverse layer (GRL) [21] into the key-value (K, V) projections
of the final self-attention block, as annotated in Figure 10.
The DED features extracted from full modal data (teacher
domain) can be transferred into blink kinematics (student
domain):

Lts =− [1/(𝑁𝑡 + 𝑁𝑠 )]
∑︁𝑁𝑡+𝑁𝑠

𝑖=1
[𝐷𝑖 log(𝑝 (𝐷𝑖 ))

+ (1 − 𝐷𝑖 ) log(1 − 𝑝 (𝐷𝑖 ))],
(5)

where 𝑁𝑡 and 𝑁𝑠 are the numbers of samples in the teacher
and student domains, respectively. 𝐷𝑖 is the domain label
for sample 𝑖 , where 𝐷𝑖 = 1 if the sample is from the teacher
domain, and 𝐷𝑖 = 0 if it is from the student domain. 𝑝 (𝐷𝑖 ) is
the predicted probability that sample 𝑖 belongs to the teacher
domain.

5.4 Query-based Multi-task Learning
Although dry eye grading is primarily determined by the
TBUT metric, it also incorporates other clinical tests such as
MGD and TMH. To address this complexity, we propose a
query-based multi-task learning module designed to jointly
model the shared feature representations between TBUT
and dry eye grading. As illustrated in Figure 10, this mod-
ule leverages integrated cross-attention mechanisms to de-
code task-specific information from distilled DED features
through learnable queries. While sharing a common feature
space and query tensor across tasks, we employ distinct loss
functions: cross-entropy loss Lce for ordinal DED grading
and mean squared error Lmse for TBUT regression.

The composite objective function is formulated as:LDED =

Lce (𝐷𝑡 , 𝑌𝑡 )+Lmse (𝐷𝑡 , 𝑌𝑡 )+𝛿 ·Lts (𝐷𝑡 , 𝐷𝑠 ), whereLce (𝐷𝑡 , 𝑌𝑡 )
is the classification loss in the teacher domain, Lmse (𝐷𝑡 , 𝑌𝑡 )
is the regression loss for TBUT prediction, Lts (𝐷𝑡 , 𝐷𝑠 ) is the
transferring loss that aligns the teacher 𝐷𝑡 and student 𝐷𝑠 ,
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Figure 12: Typical deployments. Figure 13: Examples of recorded blink data.

and 𝛿 = 0.3 controls the trade-off between transferring and
task-specific objectives.

6 EVALUATION
We conduct extensive experiments to evaluate Blinic’s perfor-
mance in real-world environments, aiming to address three
key research questions:

• (Q1) Does Blinic accurately measure TBUT?
• (Q2) Does Blinic’s architectural design enhance its effec-

tiveness in DED assessment?
• (Q3) How robust is Blinic under varying experimental

configurations?

6.1 Experiment Setup
As illustrated in Figure 12, we conducted experiments in a
clinically realistic environment1, i.e., an ophthalmic exami-
nation room. Under standardized conditions, the distance be-
tween mmWave radar and users is set to around 30cm, with
the angles at 0◦. Participants were seated facing the device
without performing specific tasks, each lasting five minutes.
Participants were not given specific posture instructions and
sat in self-selected postures. First, we implement a prototype
of Blinic using an unmodified commercial mmWave radar [1].
The algorithms are developed using Matlab 2023b, Python
3, and PyTorch 2.3. As illustrated in Figure 13, the recorded
spontaneous blink is shown on the right alongside the left
image captured by a camera mounted above the mmWave
radar. Then, the data collection procedure is integrated into
patients’ examination workflows, where doctors performed
three clinical tests: TBUT, TMR, and MGD.

Participants demographics. Our study cohort comprised
192 participants (101 female, 91 male; age range: 20–88 years;
height range: 150–180 cm) with complete mmWave sensor
data and matched electronic health records (EHR). This co-
hort included 44 healthy controls, 83 mild DED patients,
65 severe DED patients. In addition, we also collected 1119
participants with only clinic tests.
Diagnostic protocol. Participants were clinically diag-

nosed by ophthalmologists, with DED patients requiring at
least one symptom (e.g., dryness, blurred vision), abnormal
tear stability (TBUT ≤14s or Schirmer I ≤10mm/5min), and

1The experiments are approved by the Ethics Committee of both our insti-
tutions and the partnering hospital.

without comorbid conditions (i.e., impaired blinking, kerati-
tis, trichiasis). Healthy controls showed no ocular/systemic
diseases and normal vision (BCVA ≥1.0). All participants
retained withdrawal rights.
Model training. To build an effective and robust model,

our training dataset consists of two components: teacher
labeled data 𝐷𝑡 = (𝑋𝑖 , 𝑌𝑖 ) and 30% student unlabeled data
𝐷𝑠 = (𝑋 𝑗 ).

Evaluationmetrics. Following the leave-one-participant-
out cross-validation protocol from [14], we assess Blinic’s
performance through two quantitative measures: i) Accu-
racy: The proportion of correctly classified test samples. ii)
Mean Absolute Error (MAE): The average absolute devia-
tion between predicted and clinician-measured TBUT values
across participants.

6.2 Overall Performance
To answer the question (Q1), we evaluate the performance
of Blinic with only blink kinematics from mmWave radar.
Since Blinic utilizes a teacher-student learning scheme to
measure TBUT from blink kinematics, we also evaluate the
performance of teacher model using only clinical reports or
EHR raw data.
Performance of Blinic. Figures 14(a) and 14(b) present

the system’s performance in TBUT quantification and DED
severity classification, respectively. The experimental cohort
comprising 192 participants was prospectively stratified into
four distinct groups: Ug1 (n=40), Ug2 (n=55), Ug3 (n=42), and
Ug4 (n=55).

As delineated in Figure 14(a), group-level MAE for TBUT
measurements were 2.41s (Ug1), 2.32s (Ug2), 3.57s (Ug3), and
2.61s (Ug4), with the integrated system (Blinic) achieving
an overall MAE of 2.73s across all participants. Complemen-
tary results in Figure 14(b) demonstrate DED classification
accuracies of 89.34% (Ug1), 92.68% (Ug2), 86.53% (Ug3), and
93.04% (Ug4), culminating in a system-wide classification
accuracy of 90.40%.
Figure 14(c) further reveals strong concordance between

Blinic-derived TBUTmeasurements and clinical gold-standard
assessments, particularly among high-performing userswithin
each cohort (mean absolute difference ≤ 0.8s). These find-
ings collectively demonstrate that Blinic enables precise non-
invasive TBUT quantification through blink kinematic anal-
ysis.
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Figure 14: Overall system performance of Blinic across different participants.

Table 1: Performance of various DED detection.

Metrics DEDector [20] SDE [45] Blinic

Binary Binary Binary Grading
Accuracy 80.43% 94.22% 98.01% 87.0%
F1-score 75.67% >91.43%* 93.17% 84.35%
TBUT - - - 2.41s

∗: SDE [45] does not report a concrete F1-score.

Table 1 compares various DED detection methods. Since
state-of-the-art (SOTA) methods only perform binary classifi-
cation, to ensure fair comparison, we defined two classes: (1)
a single ’DED’ class encompassing all patients across severity
stages; and (2) a ’Normal’ class. As shown in Table 1, Blinic
achieves better performance than the SOTAmethods. Blinic’s
grading accuracy (i.e., multi-class severity classification) is
lower than its binary screening performance, primarily due
to misclassification between moderate and severe cases.
Performance of teacher models trained exclusively

on clinical reports. Figure 18 presents the diagnostic ac-
curacy of DED severity grading using clinical reports. The
experimental protocol consisted of two phases: First, the
clinical report corpus was stratified into training and test-
ing subsets with a 7:3 partitioning ratio. Three foundational
architectures were subsequently fine-tuned on the training
data to develop DryEye-LLM variants: Flan-T5 large lan-
guage model (Flan-T5-LLM) [15] with 3B/5B parameters and
BERT-Large (0.34B). The 3B model achieved the highest accu-
racy (98.44%), followed by the 0.34Bmodel (96.87%), while the
11B variant unexpectedly underperformed (92.9%). Though
larger models typically show better performance, this in-
verse pattern demonstrates that architectural optimization
surpasses mere parameter scaling for medical tasks. The re-
sults align with clinical AI specialization research, indicating
targeted mid-sized models outperform generic large models
in diagnostics [27].
Performance of teacher models trained exclusively

on EHR raw data. Figure 14(d) demonstrates the diagnostic
accuracy for DED severity grading using multi-modal EHR,
comprising MGD imaging, TMR measurements, and TBUT
video recordings. We implemented the model architecture

shown in Figure 10, replacing UDA components and atten-
tion query mechanisms with a conventional classification
head. The experimental design comprised two sequential
phases: First, partitioning of raw EHR data from 1,119 partic-
ipants into 17 balanced cohorts, with a 7:3 training-testing
ratio. Second, cross-cohort validation of feature extraction
capability. As shown in Figure 14(d), we can see that Blinic
can achieve accuracies ranging from 70% to 96%. The varia-
tion results demonstrate that the effective extraction of DED
features from raw EHR data is a non-trivial task. Therefore,
we design a teacher-student learning scheme to transfer DED
knowledge, enabling the possibility of measuring TBUT from
blink kinematics.

The Blinicmodel contains 0.26 billion trainable parameters
with a total parameter count of 1.05 billion. This depth-wise
weight sharing architecture enhances inference efficiency
through memory optimization, achieving an inference la-
tency of 125 ms on NVIDIA GeForce RTX 4090. For users’
end devices, we evaluated inference latency on a 2019 Mac-
Book Pro laptop (2.4 GHz Quad-Core Intel Core i5 CPU, 8
GB RAM), measuring 1.373 s.

6.3 Ablation Study
To investigate (Q2), we conduct empirical evaluations of
Blinic’s performance across two key factors: teacher model
absence and packet loss of mmWave signal.

6.3.1 Evaluation of Knowledge Distillation Framework. In
this section, we empirically evaluate the effectiveness of
Blinic to clarify how the teacher-student learning scheme
benefits the measurement of TBUT from blink kinemat-
ics. Specifically, we validate knowledge distillation from a
teacher model trained on: Scenario 1 (S1): a combination of
MGD, TMR, and diagnostic reports, Scenario 2 (S2): blink
kinematics from mmWave signals alone (without distilla-
tion), Scenario 3 (S3): MGD with diagnostic reports, and
Scenario 4 (S4): TMR with diagnostic reports.
As shown in Figure 16, knowledge transfer via teacher-

student distillation critically enhances TBUT measurement.
S1 achieves optimal performance: lowest TBUT MAE (2.71s)
and highest DED classification accuracy (85.71%). Conversely,
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Figure 15: Impact of packet loss.
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Figure 17: Impact of gender.
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Figure 19: Impact of ages.
300 400 500 600

0

2

4

6

8

10

M
A
E

A
cc

ur
ac

y 
(%

)

60

68

76

84

92

100

M
A

E

1

1.6

2.2

2.8

3.4

4

300 400 500 600

MAE Accuracy

Figure 20: Impact of outliers.

S2 without distillation yields the highest TBUT MAE (3.67s)
and lowest accuracy (71.43%). Notably, S3 (TBUTMAE: 3.18s;
accuracy: 82.25%) outperforms S4 (TBUT MAE: 3.04s; accu-
racy: 74.65%), indicating that MGD provides more clinically
significant information than TMH. This aligns with physi-
ological mechanisms: meibomian glands offer multifaceted
data on dry eye etiology, classification, and severity, whereas
tear meniscus height primarily reflects tear volume and of-
fers relatively limited information. Consequently, distilled
DED knowledge enables student models using only blink
kinematics to achieve effective TBUT measurement.

6.3.2 Evaluation of Packet Loss. We designed an antenna-
coded phase MIMO system to enhance spatial resolution,
though this implementation introduced packet loss-induced
noise. To mitigate this limitation, we implemented a packet
loss detection algorithm for blink data outlier removal, with
implementation details provided in Section 4.2 (Noise caused
by packet loss). Through empirical evaluation with 35 partic-
ipants, we compared Blinic’s performance with and without
the detection algorithm.
Figure 15 demonstrates that Blinic achieves an average

accuracy of 89.34% diagnostic with the packet loss detec-
tion algorithm, compared to 68.91% without it. Similarly,
the TBUT measurement MAE improves from 2.35s to 2.11s
when employing the algorithm. These results confirm the
algorithm’s critical role in performance optimization. This
improvement stems from the algorithm’s capacity to enhance
spontaneous blink data quality, enabling more effective ex-
traction of DED biomarkers. Furthermore, the baseline MAE

(≤2.35s) indicates Blinic’s inherent capability to detect partial
abnormal blink patterns even without noise mitigation.

6.4 Robustness
To answer the question (Q3), we empirically evaluate the
effectiveness of Blinic under different settings.

6.4.1 Impact of Angle Range. The receivers capture reflec-
tions not only from the target user’s head but also from
surrounding surfaces. To address this multipath interference,
we developed an angular filtering mechanism that selectively
processes signals within natural head movement ranges (de-
tailed in Section 4.2: Noise caused by surrounding surfaces).
Through empirical evaluation with 37 participants, we com-
pared Blinic’s performance under different ranges, i.e., five
incremental ranges from 50◦ to 90◦ (10◦ increments) and one
extended 120◦ range.

Figure 21 reveals an inverse relationship between angular
range and system performance. The MAE for TBUTmeasure-
ment demonstrates progressive improvement, decreasing
from 3.62s at 50◦ to an optimal 2.57s at 70◦, then increas-
ing to 3.64s at 120◦. This pattern is mirrored in diagnostic
accuracy, which rises from 86.49% (50◦) to peak at 92.11%,
before declining to 62.16% (120◦). Concurrent TBUT predic-
tion errors follow this pattern, with MAE values measuring
3.62s (50◦), reaching optimal precision at 2.57s (70◦), and de-
teriorating to 3.64s (120◦). These results establish 70◦ as the
optimal angular detection range, achieving minimal TBUT
estimation error (MAE=2.57s) with an average accuracy of
91.89%. This configuration is therefore implemented as the
system default.
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6.4.2 Impact of Distance. Given the uncontrolled nature of
home environments where device-user distance may vary
significantly, we empirically evaluated Blinic’s performance
to validate its effectiveness at different user-device distances:
30, 40, 50, and 60 cm. Data were collected from three ran-
domly selected DED patients (two severe cases and one mod-
erate case). Participants first underwent clinical dry eye ex-
aminations at a hospital, followed by at-home testing at
varying distances.

The average TBUT MAE values were 1.42s (30 cm), 1.94s
(40 cm), 1.96s (50 cm), and 2.05s (60 cm). Although Blinic’s
performance decreases with increasing distance, the MAE
remains ≤2.05s even at the maximum tested distance of 60
cm. This demonstrates Blinic’s viability for practical at-home
applications.

6.4.3 Impact of Outliers. Since spontaneous blinks may be
interferenced by abnormal large values, we utilize an abnor-
mal value threshould to remove its impact in Section 4.2:
Noise caused by outliers). Through empirical evaluation with
37 participants, we compared Blinic’s performance under
different threshoulds, i.e., 300, 400, 500, and 800.
Figure 20 reveals Blinic’s performance degradation with

increasing anomaly detection thresholds. At thresholds 300
/400 /500 /800, TBUT MAE measures 3.38 /2.57 /2.85 /3.58s
while DED grading accuracy reaches 90.30%/ 91.89%/ 91.14%/
91.41%. The 400 threshold achieves optimal balance: lower
thresholds (<400) introduce noise through oversensitive
blink detection, whereas higher thresholds (>400) filter di-
agnostically useful features. This trade-off establishes 400 as
the operational default.

6.4.4 Impact of Ages. We conducted stratified evaluations
across four demographic cohorts: young adults (20-39 years,
n=10), middle-aged (40-49 years, n=19), senior (50-59 years,
n=12), and elderly (60-79 years, n=21) participants.

Figure 19 reveals significant age-dependent performance
variations in Blinic. The system demonstrated TBUT predic-
tion MAEs of 3.40s (20-39), 2.44s (40-49), 3.76s (50-59), and
2.17s (60-79), with corresponding diagnostic accuracies of
90.00%, 83.33%, 89.47%, and 95.24% respectively. Minimum
MAE (2.17s) occurred in the elderly cohort (60-79 years), con-
trasting with the suboptimal performance in middle-aged
participants. Notably, the system maintained robust perfor-
mance (<3.76) across all cohorts, demonstrating strong age
generalizability.

6.4.5 Impact of Gender. We empirically evaluated the ef-
fectiveness of Blinic across different gender groups: male,
female, and intergender. For each group, we selected 30 indi-
viduals for data collection.

As shown in Figure 17, the average MAE of TBUT predic-
tion was 2.46s, 3.39s, and 3.05s for males, females, and inter-
gender individuals, respectively. Similarly, the average DED
accuracy of Blinic was 88.89%, 88.89%, and 91.30% for these
three groups. These results indicate that Blinic performs con-
sistently well across all gender categories. This consistency
arises because Blinic analyzes spontaneous blinking patterns,
which are indicative of ocular abnormalities and independent
of gender.

6.4.6 Impact of Data Length. We empirically evaluated the
effectiveness of Blinic across different data durations (20-
second and 40-second intervals). In clinical practice [39],
spontaneous blink analysis traditionally relies on 20-second
recordings captured by high-speed cameras (≥1000 fps). For
each duration group, we recruited 37 participants for data
collection.

As illustrated in Figure 22, the average MAE of TBUT mea-
surements is 2.37s and 4.17s for 40-second and 20-second
mmWave data, respectively. Correspondingly, the DED grad-
ing accuracy is 89.47% and 71.05% for these two durations.
Notably, Blinic demonstrates superior performance with 40-
second data compared to 20-second recordings. This im-
provement likely stems from the extended 40-secondwindow
capturing more DED symptomatic patterns in spontaneous



Blinic ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

blinks. Furthermore, even with 20-second data, Blinic main-
tains an accuracy exceeding 71.05%, suggesting its capability
to detect partial DED manifestations.

6.4.7 Long-Term Consistency of Blinic. We conducted an 18-
day longitudinal evaluation of Blinic’s measurement consis-
tency with three healthy participants in home environments
and one DED patient in clinical settings.

As shown in Figure 23, the system demonstrates sustained
TBUT measurement accuracy through continuous tracking.
Using initial clinical readings as baseline references: healthy
participant 𝐻1 maintained a MAE of 0.12 s throughout the
18-day observation window. Participant 𝐻2 exhibited MAE
fluctuations from 0.92 s at the 9-day mark to 0.84 s in sub-
sequent measurements, while Participant 𝐻3 showed more
pronounced improvement from 1.19 s to 0.41 s over the same
9-day interval. Clinical validation with a DED patient: follow-
up measurements at 17-day intervals yielded MAE values
of 0.46 s (clinical TBUT 6.40 s) and 2.13 s (clinical TBUT
9.69 s), confirming Blinic’s capability to maintain diagnostic
relevance beyond short-term usage.

7 RELATED WORK
As highlighted in the TFOS Dry Eye Workshop diagnostic
guidelines [44], blink parameter analysis has emerged as
a clinically significant biomarker, earning recognition as a
recommended diagnostic tool for DED evaluation [32]. Thus,
one leading concept is to use blink analysis for screening
DED [33, 45, 48]. SDE [45] uses RF signals to capture fine-
grained spontaneous blinking and extract DED biomarker
representations, realizing a ubiquitous DED screening sys-
tem. EyeScore [48] employs an iPhone to record eyelid move-
ments for one minute within the app, analyzing blink rates
and patterns as early clinical biomarkers for DED. DryEyeR-
hythm [33] utilizes the cameras of smart devices to assess
users’ blink characteristics for screening DED, achieving a
positive predictive value of 91.3% and a negative predictive
value of 69.1%. Other studies [8, 22, 23, 38, 41] leverage spe-
cific devices or additional tests for DED screening. While
these works successfully demonstrate the feasibility of as-
sessing DED at home, they do not facilitate the measurement
of TBUT. To measure TBUT in a home setup, DEDector
[20] employs an external optical attachment on smartphone
and uses optical image-processing methods to screen for
abnormal TBUT. However, DEDector can still only achieve
a two-class classification that differentiates normal or abnor-
mal TBUT subjects, while measuring precise TBUT values
for management is not feasible.

In response to these limitations, Blinic explores the feasibil-
ity of designing a passive, contactless, home-based solution
to accurately assess TBUT values for improved DED man-
agement. This approach aims to indicate disease progression

Figure 24: Angular separation of jaw motion.

and facilitate timely adjustments to treatment strategies and
interventions.

8 DISCUSSION
Facial Movement Considerations. While Blinic focuses
on detecting subtle eyelid movements during blinks, other
motions like facial expressions or jaw movements can also
occur. As shown in Figure 8(a), speech-induced movements
generate interference comparable to head motion in terms of
amplitude and duration characteristics. Since Blinic requires
only ∼40 seconds per assessment, we can reasonably instruct
patients to remain silent and still during measurement to
mitigate these artifacts. Notably, both speech and head move-
ments constitute significant noise sources relative to small
eyelid motions.

Furthermore, Blinic’s antenna-codedMIMOmmWave radar
enhances angular resolution, enabling separation between
eyelid and facial movements in the angle-Doppler domain. As
demonstrated in Figure 24, rotating the radar by 90 degrees
allows clear separation of blinks and minor jaw movements
along the angle dimension.

9 CONCLUSION
In this paper, we propose Blinic, a fully passive and con-
tactless DED assessment system based on mmWave signals.
The system utilizes a teacher-student architecture to distill
pathological knowledge from EHR data into blink kinematics
captured via mmWave radar. Blinic then quantifies TBUT
through analysis of blink signals. Experimental validation
demonstrates the system’s effectiveness, with results con-
firming its operational reliability. This study provides critical
insights for developing DED assessment systems to enhance
home-based management of the condition.
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